進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508202012061600
論文名稱(中文) 拓樸最佳化結合元圖策略於考慮真實輸出位移下之幾何非線性等力輸出撓性機構設計
論文名稱(英文) Topology Optimization of Geometrically Nonlinear Compliant Constant-Force Mechanisms Considering Actual Output Displacement with a Meta-graph Strategy
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 鍾富名
研究生(英文) Fu-Ming Chung
學號 N16074679
學位類別 碩士
語文別 中文
論文頁數 126頁
口試委員 指導教授-劉至行
口試委員-陳家豪
口試委員-陳國聲
口試委員-藍兆杰
中文關鍵字 等力輸出機構  撓性機構  拓樸最佳化  幾何非線性  元圖 
英文關鍵字 constant force mechanism  compliant mechanism  topology optimization  geometrically nonlinear  meta-graph 
學科別分類
中文摘要 本研究提出一個等力撓性機構拓樸最佳化方法來設計等力輸出撓性機構,等力輸出撓性機構為可在不同的輸入位移條件下,於輸出端維持相同的力量輸出,此特性使得此類型的機構可無需額外配合感測器進行輸出力量的控制。在等力撓性機構拓樸最佳化流程中,為了解決網格相依以及棋盤狀網格之問題,本研究導入密度濾化演算法以及參數化投射方法,且為了滿足等力輸出撓性機構以及夾爪容易產生的幾何非線性問題,採用非線性的有限元素法來進行結構的分析,並以移動漸進線方法來做為設計變數更新的方法。為了加強等力撓性機構設計的穩定性以及拓樸結果的連接性,本研究將原先虛擬輸出位移誤差最小化問題改為本研究提出的考慮真實輸出位移的複合目標函數誤差平方和的最小化問題,並提出適用於密度法之元圖法。藉由本研究提出的等力撓性機構拓樸最佳化流程,本研究成功設計出兩種等力輸出撓性機構以及一種等力輸出撓性夾爪,並以等力輸出撓性夾爪進行試作驗證。本研究並對拓樸過程中產生的低實體密度元素、額外添加的超彈性體元素以及拓樸邊緣的平滑化處理皆有進行詳細的模擬分析與討論,最後使用TPE軟性材料進行3D列印製作,實際的等力輸出撓性夾爪在輸出力量變化穩定之後,於輸入位移為13 mm至33 mm的區間中具有等力效果,其等力值落在41.15 N,而平均絕對誤差則為1.88%。本研究搭配等力輸出撓性夾爪設計並製作出三指等力撓性夾爪模組,將其安裝於四軸機械手臂上進行夾取試驗,基於撓性機構被動式保護被夾取物的特點以及等力機構的等力輸出效果,三指夾爪模組展現出穩定的夾持能力。
英文摘要 This study presents an optimal design procedure to design compliant constant-force mechanisms based on topology optimization. A constant-force mechanism can generate a nearly constant output force over a range of input displacements without the need of additional sensors for output force control. This study uses the density filter scheme to overcome the mesh dependence and checkerboard problems, and makes use of parameterized projection function to reduce the existence of the gray elements. Because of the nonlinear behavior of the compliant constant-force mechanisms, geometrically nonlinear analysis is considered in finite element analysis. The method of moving asymptotes is used to update design variables. To enhance the stability of the optimal design procedure and the connectivity of topological results, a composite objective function and a meta-graph strategy suitable for the SIMP method are proposed. The numerical optimization problem of the composite objective function considering the actual output displacement is to minimize the sum of squares of errors. Through the proposed optimal design procedure, two types of compliant constant-force mechanisms and one type of the compliant constant-force gripper have been presented. The effect of low physical density elements, additional hyperelastic elements, and the smoothing of topological edges are discussed in this study. The prototype of the compliant constant-force gripper is manufactured by 3D printing using thermoplastic elastomer material. The prototype has a constant output force in the input displacement region from 13 to 33 mm, the value of the constant output force is 41.15 N, and the average absolute error is 1.88%. A three-finger constant-force gripper module is developed and installed on a four-axis robotic arm for grasping application. Test results show the presented design is with a stable gripping ability.
論文目次 摘要 i
ABSTRACT ii
致謝 xxi
目錄 xxii
表目錄 xxv
圖目錄 xxvi
符號說明 xxix
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-2-1 拓樸最佳化文獻回顧 4
1-2-2 等力輸出機構文獻回顧 9
1-2-3 元圖策略文獻回顧 10
1-3 研究目的 11
1-4 本文架構 13
第二章 拓樸最佳化理論 14
2-1 前言 14
2-2 幾何非線性之結構最佳化問題 17
2-2-1 濾化演算法以及投射方法介紹 17
2-2-2 非線性問題介紹 21
2-2-3 幾何非線性有限元素分析 22
2-2-4 虛擬彈簧之設計 25
2-2-5 複合目標函數誤差平方和最小化之最佳化問題 28
2-2-6 超彈性體假設法介紹 31
2-2-7 幾何非線性之最佳化問題的元素靈敏度分析 34
2-3 MMA(Method of Moving Asymptotes)理論介紹與參數選用 38
2-4 元圖策略介紹 43
2-4-1 有限元素網格的圖抽象化 43
2-4-2 抽象元圖之建立 44
2-4-3 對應之修剪策略 45
2-5 等力撓性機構拓樸最佳化流程 47
2-6 本章小節 50
第三章 等力輸出撓性機構設計 51
3-1 前言 51
3-2 邊界條件介紹 51
3-2-1 範例機構一 51
3-2-2 範例機構二 52
3-3 拓樸最佳化結果與比較 54
3-3-1 範例機構一 54
3-3-2 範例機構二 61
3-4 本章小結 68
第四章 等力輸出撓性夾爪設計 69
4-1 前言 69
4-2 邊界條件介紹 69
4-3 拓樸最佳化結果與比較 70
4-4 本章小結 82
第五章 等力輸出撓性夾爪實驗 83
5-1 前言 83
5-2 等力輸出撓性夾爪模擬分析與製造 83
5-2-1 低實體密度元素與超彈性體元素之影響 83
5-2-2 邊緣平滑化之影響 85
5-2-3 未加入元圖法之拓樸結果的等力輸出效果 91
5-2-4 等力輸出撓性夾爪製作 93
5-3 等力輸出撓性夾爪實驗 94
5-3-1 實驗器材與架設配置 95
5-3-2 實驗結果 96
5-3-3 變形圖比較 104
5-4 等力輸出撓性夾爪模組 106
5-4-1 三指等力撓性夾爪模組與系統 106
5-4-2 夾取試驗 110
5-5 本章小結 112
第六章 結論與建議 113
6-1 結論 113
6-2 建議 114
參考文獻 118
參考文獻 [1] 瑞耘科技公司網頁http://www.calitech.com.tw/.
[2] 龍欣科技公司網頁https://edragontek.weebly.com/.
[3] FESTO公司網頁https://www.festo.com/.
[4] 上銀科技公司網頁https://www.hiwin.tw/.
[5] SCHUNK公司網頁https://schunk.com/.
[6] 台灣氣立公司網頁http://www.chelic.com/.
[7] E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, and H. M. Jaeger, "Universal robotic gripper based on the jamming of granular material," Proceedings of the National Academy of Sciences, vol. 107, no. 44, pp. 18809-18814, 2010.
[8] C.-H. Liu, T.-L. Chen, C.-H. Chiu, M.-C. Hsu, Y. Chen, T.-Y. Pai, W.-G. Peng, and Y.-P. Chiang, "Optimal design of a soft robotic gripper for grasping unknown objects," Soft Robotics, vol. 5, no. 4, pp. 452-465, 2018.
[9] G. Udupa, P. Sreedharan, P. Sai Dinesh, and D. Kim, "Asymmetric bellow flexible pneumatic actuator for miniature robotic soft gripper," Journal of Robotics, vol. 2014, 2014.
[10] L. L. Howell, Compliant Mechanisms. John Wiley & Sons, 2001.
[11] S. Perai, "Methodology of compliant mechanisms and its current developments in applications: a review," American Journal of Applied Sciences, vol. 4, no. 3, pp. 160-167, 2007.
[12] L. L. Howell and A. Midha, "A loop-closure theory for the analysis and synthesis of compliant mechanisms," Journal of Mechanical Design, vol. 118, no. 1, pp. 121-125, 1996.
[13] L. L. Howell, S. P. Magleby, and B. M. Olsen, Handbook of Compliant Mechanisms. John Wiley & Sons, 2013.
[14] M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods, and Applications. Springer Science & Business Media, 2013.
[15] S. R. Deepak, M. Dinesh, D. K. Sahu, and G. K. Ananthasuresh, "A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms," Journal of Mechanisms and Robotics, vol. 1, no. 1, 2009.
[16] M. B. Fuchs and E. Moses, "Optimal structural topologies with transmissible loads," Structural and Multidisciplinary Optimization, vol. 19, no. 4, pp. 263-273, 2000.
[17] N. P. van Dijk, K. Maute, M. Langelaar, and F. Van Keulen, "Level-set methods for structural topology optimization: a review," Structural and Multidisciplinary Optimization, vol. 48, no. 3, pp. 437-472, 2013.
[18] S. Osher and J. A. Sethian, "Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations," Journal of Computational Physics, vol. 79, no. 1, pp. 12-49, 1988.
[19] R. B. Haber and M. P. Bendsøe, "Problem formulation, solution procedures and geometric modeling-key issues in variable-topology optimization," in 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, p. 4948, 1998.
[20] J. A. Sethian and A. Wiegmann, "Structural boundary design via level set and immersed interface methods," Journal of Computational Physics, vol. 163, no. 2, pp. 489-528, 2000.
[21] M. J. De Ruiter and F. Van Keulen, "Topology optimization: approaching the material distribution problem using a topological function description," in Computational Techniques for Materials, Composites and Composite Structures (Leuven, 6-8 September 2000), pp. 111-119, 2000.
[22] S. Nishiwaki, M. I. Frecker, S. Min, and N. Kikuchi, "Topology optimization of compliant mechanisms using the homogenization method," International Journal for Numerical Methods in Engineering, vol. 42, no. 3, pp. 535-559, 1998.
[23] M. P. Bendsøe and O. Sigmund, "Material interpolation schemes in topology optimization," Archive of Applied Mechanics, vol. 69, no. 9-10, pp. 635-654, 1999.
[24] M. P. Bendsøe and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," Computer Methods in Applied Mechanics and Engineering, vol. 71, no. 2, pp. 197-224, 1988.
[25] Y. Li, K. Saitou, and N. Kikuchi, "Topology optimization of thermally actuated compliant mechanisms considering time-transient effect," Finite Elements in Analysis and Design, vol. 40, no. 11, pp. 1317-1331, 2004.
[26] O. Sigmund, "On the design of compliant mechanisms using topology optimization," Journal of Structural Mechanics, vol. 25, no. 4, pp. 493-524, 1997.
[27] Y. M. Xie and G. P. Steven, "A simple evolutionary procedure for structural optimization," Computers & Structures, vol. 49, no. 5, pp. 885-896, 1993.
[28] O. Sigmund, "A 99 line topology optimization code written in Matlab," Structural and Multidisciplinary Optimization, vol. 21, no. 2, pp. 120-127, 2001.
[29] K. Svanberg, "The method of moving asymptotes—a new method for structural optimization," International Journal for Numerical Methods in Engineering, vol. 24, no. 2, pp. 359-373, 1987.
[30] C. B. W. Pedersen, T. Buhl, and O. Sigmund, "Topology synthesis of large‐displacement compliant mechanisms," International Journal for numerical methods in engineering, vol. 50, no. 12, pp. 2683-2705, 2001.
[31] Y. Li, "Topology optimization of compliant mechanisms based on the BESO method," Ph.D. dissertation, Civil, Environmental and Chemical Engineering, RMIT University, 2014.
[32] C.-H. Liu, G.-F. Huang, C.-H. Chiu, and T.-Y. Pai, "Topology synthesis and optimal design of an adaptive compliant gripper to maximize output displacement," Journal of Intelligent & Robotic Systems, vol. 90, no. 3-4, pp. 287-304, 2018.
[33] T. Buhl, C. B. Pedersen, and O. Sigmund, "Stiffness design of geometrically nonlinear structures using topology optimization," Structural and Multidisciplinary Optimization, vol. 19, no. 2, pp. 93-104, 2000.
[34] G. H. Yoon and Y. Y. Kim, "Element connectivity parameterization for topology optimization of geometrically nonlinear structures," International Journal for Numerical Methods in Engineering, vol. 42, no. 7, pp. 1983-2009, 2005.
[35] N. P. van Dijk, M. Langelaar, and F. van Keulen, "Element deformation scaling for robust geometrically nonlinear analyses in topology optimization," Structural and Multidisciplinary Optimization, vol. 50, no. 4, pp. 537-560, 2014.
[36] Y. Luo, M. Y. Wang, and Z. Kang, "Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique," Computer Methods in Applied Mechanics and Engineering, vol. 286, pp. 422-441, 2015.
[37] L. Liu, J. Xing, Q. Yang, and Y. Luo, "Design of large-displacement compliant mechanisms by topology optimization incorporating modified additive hyperelasticity technique," Mathematical Problems in Engineering, vol. 2017, 2017.
[38] T. E. Bruns and D. A. Tortorelli, "Topology optimization of non-linear elastic structures and compliant mechanisms," Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 26-27, pp. 3443-3459, 2001.
[39] M. Y. Wang and S. Wang, "Bilateral filtering for structural topology optimization," International Journal for Numerical Methods in Engineering, vol. 63, no. 13, pp. 1911-1938, 2005.
[40] J. K. Guest, J. H. Prévost, and T. Belytschko, "Achieving minimum length scale in topology optimization using nodal design variables and projection functions," International Journal for Numerical Methods in Engineering, vol. 61, no. 2, pp. 238-254, 2004.
[41] O. Sigmund, "Morphology-based black and white filters for topology optimization," Structural and Multidisciplinary Optimization, vol. 33, no. 4-5, pp. 401-424, 2007.
[42] S. Xu, Y. Cai, and G. Cheng, "Volume preserving nonlinear density filter based on heaviside functions," Structural and Multidisciplinary Optimization, vol. 41, no. 4, pp. 495-505, 2010.
[43] A. Kawamoto, T. Matsumori, S. Yamasaki, T. Nomura, T. Kondoh, and S. Nishiwaki, "Heaviside projection based topology optimization by a PDE-filtered scalar function," Structural and Multidisciplinary Optimization, vol. 44, no. 1, pp. 19-24, 2011.
[44] Y. Liu, D.-J. Li, D.-p. Yu, J.-g. Miao, and J. Yao, "Design of a curved surface constant force mechanism," Mechanics Based Design of Structures and Machines, vol. 45, no. 2, pp. 160-172, 2017.
[45] P. Lambert and J. L. Herder, "An adjustable constant force mechanism using pin joints and springs," in New Trends in Mechanism and Machine Science: Springer, pp. 453-461, 2017.
[46] C. B. W. Pedersen, N. A. Fleck, and G. K. Ananthasuresh, "Design of a compliant mechanism to modify an actuator characteristic to deliver a constant output force," Journal of Mechanical Design, vol. 128, no. 5, pp. 1101-1112, 2006.
[47] J.-Y. Wang and C.-C. Lan, "A constant-force compliant gripper for handling objects of various sizes," Journal of Mechanical Design, vol. 136, no. 7, 2014.
[48] Y. Liu, Y. Zhang, and Q. Xu, "Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 476-486, 2016.
[49] 陳大倫, 拓樸最佳化於等力輸出撓性夾爪設計之研究, 碩士論文, 機械工程學系, 國立成功大學, 2018.
[50] 許貿城, 拓樸與幾何最佳化於等力輸出撓性機構設計之研究, 碩士論文, 機械工程學系, 國立成功大學, 2019.
[51] O. M. Querin, G. P. Steven, and Y. M. Xie, "Evolutionary structural optimisation (ESO) using a bidirectional algorithm," Engineering Computations, vol. 15, no. 8, pp. 1031-1048, 1998.
[52] D. Stojanov, B. G. Falzon, X. Wu, and W. Yan, "Implementing a structural continuity constraint and a halting method for the topology optimization of energy absorbers," Structural and Multidisciplinary Optimization, vol. 54, no. 3, pp. 429-448, 2016.
[53] D. J. Munk, G. A. Vio, and G. P. Steven, "A bi-directional evolutionary structural optimisation algorithm with an added connectivity constraint," Finite Elements in Analysis and Design, vol. 131, pp. 25-42, 2017.
[54] D. Montoya-Zapata, D. A. Acosta, O. Ruiz-Salguero, and D. Sanchez-Londono, "FEA structural optimization based on metagraphs," in The 13th International Conference on Soft Computing Models in Industrial and Environmental Applications: Springer, pp. 209-220, 2018.
[55] D. Montoya-Zapata, D. A. Acosta, O. Ruiz-Salguero, J. Posada, and D. Sanchez-Londono, "A general meta-graph strategy for shape evolution under mechanical stress," Cybernetics and Systems, vol. 50, no. 1, pp. 3-24, 2019.
[56] M. Liu, J. Zhan, B. Zhu, and X. Zhang, "Topology optimization of compliant mechanism considering actual output displacement using adaptive output spring stiffness," Mechanism and Machine Theory, vol. 146, p. 103728, 2020.
[57] X. Huang and M. Y. Xie, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. John Wiley & Sons, 2010.
[58] M. P. Bendsøe and O. Sigmund, Optimization of Structural Topology, Shape, and Material. Springer, 1995.
[59] O. Sigmund and J. Petersson, "Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima," Structural Optimization, vol. 16, no. 1, pp. 68-75, 1998.
[60] T. E. Bruns and D. A. Tortorelli, "An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms," International Journal for Numerical Methods in Engineering, vol. 57, no. 10, pp. 1413-1430, 2003.
[61] P. A. L. S. Martins, R. M. Natal Jorge, and A. J. M. Ferreira, "A comparative study of several material models for prediction of hyperelastic properties: Application to silicone‐rubber and soft tissues," Strain, vol. 42, no. 3, pp. 135-147, 2006.
[62] A. Diaz and O. Sigmund, "Checkerboard patterns in layout optimization," Structural Optimization, vol. 10, no. 1, pp. 40-45, 1995.
[63] B. Bourdin, "Filters in topology optimization," International Journal for Numerical Methods in Engineering, vol. 50, no. 9, pp. 2143-2158, 2001.
[64] F. Wang, B. S. Lazarov, and O. Sigmund, "On projection methods, convergence and robust formulations in topology optimization," Structural and Multidisciplinary Optimization, vol. 43, no. 6, pp. 767-784, 2011.
[65] C. C. Wu and J. S. Arora, "Design sensitivity analysis and optimization of nonlinear structuralresponse using incremental procedure," American Institute of Aeronauties and Astronautics, vol. 25, no. 8, pp. 1118-1125, 1987.
[66] M. Kollmann, "Sensitivity analysis: The direct and adjoint method," M.S. thesis, Institute of Computational Mathematics, Johannes Kepler University Linz, 2010.
[67] O. Sigmund, "Optimum design of microelectromechanical systems," in Mechanics for a New Mellennium: Springer, pp. 505-520, 2001.
[68] D. Petković, N. D. Pavlović, S. Shamshirband, and N. B. Anuar, "Development of a new type of passively adaptive compliant gripper," Industrial Robot, vol. 40, no. 6, pp. 610-623, 2013.
[69] S. Rahmatalla and C. C. Swan, "Sparse monolithic compliant mechanisms using continuum structural topology optimization," International Journal for Numerical Methods in Engineering, vol. 62, no. 12, pp. 1579-1605, 2005.
[70] O. Sigmund, "Design of multiphysics actuators using topology optimization–part I: one-material structures," Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 49-50, pp. 6577-6604, 2001.
[71] K. Svanberg, "MMA and GCMMA-two methods for nonlinear optimization," Technical report. 2007.
[72] C. Alonso, R. Ansola, E. Veguería, and O. M. Querin, "Results comparison between SIMP and SERA for compliant mechanisms design," Engineering Optimization 2014, p. 9, 2014.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw