進階搜尋


下載電子全文  
系統識別號 U0026-2508202004114900
論文名稱(中文) 增進高分子半導體侷域有序性以關聯電子結構效能與異向性分子構形
論文名稱(英文) Correlating electronic structures and performance to anisotropic conformations of molecules via the extension of local ordering and carrier densities in polymeric semiconductors
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 林威伸
研究生(英文) Wei-Shen Lin
學號 N56061632
學位類別 碩士
語文別 中文
論文頁數 63頁
口試委員 指導教授-徐邦昱
口試委員-郭昌恕
口試委員-陳貞夙
口試委員-劉浩志
口試委員-阮至正
中文關鍵字 聚(3-己烷噻吩)  高分子排列  電子結構效能  螢光量子產率 
英文關鍵字 Poly( 3-hexylthiophene)  Order morphology  Photoluminescence quantum yield  Anisotropic quantum efficiency system 
學科別分類
中文摘要 為了瞭解侷域分子構形與巨觀形貌如何調控軟性半導體光電子特性,本研究選用半導體高分子Poly(3-hexylthiophene)(P3HT)作為材料,以三明治結構(Sandwich Structure)液態成膜系統,搭配奈米溝槽、單分子層、與表面能調控奈米纖維有序性,以此改變高分子主幹微觀的延展性,擴大分子間交互作用的範圍後可在巨觀尺度形成高分子纖維,製造侷域與非侷域電子結構。
 本實驗自行設計並架設異向性量子效能系統,運用分色鏡與濾波器等光學零件,並以步進馬達轉動相位波板調變雷射極化,能同時量測樣品的極化拉曼散射頻譜和極化螢光頻譜;以極化拉曼散射頻譜求得高分子薄膜相對全角度極化光的分子震盪,得到侷域分子構形的指向性分佈搭配極化螢光頻譜即可得知分子層級電子結構對形貌的響應。由於軟性半導體的電子結構與構形高度相關,調控電子結構理應反應在機械性質上,因此異向性量子效能系統亦可在量測中給予樣品電壓,反向觀察電子結構動力學響應如何影響不同分子軸向的震盪,雙向解析光電子特性與分子構形的機械能轉換。
本研究藉由調控分子間作用力形成微觀有序的分子排列,巨觀上也是高度有序的纖維結構,並透過積分球為核心的異向性量子效能系統,定量分析電子結構和分子排列的關聯性。全角度極化拉曼散射頻譜可了解高分子主幹排列傾向外,並分析低有序扭結(kink)引發的散射對載子遷移率的影響。發光效能則以菲涅耳方程式(Fresnel equations)搭配布格-朗伯-比爾定律(Bouguer–Lambert–Beer Law)來排除矽基板的吸收,相對準確地求得螢光量子產率(Photoluminescence Quantum Yield ,PLQY)。
英文摘要 To understand how local stacking conformations of molecules regulate the photonic properties of soft semiconductors, controllable ordering and electronic structures of the soft semiconductors are a necessary platform. We utilize sandwich casting, nano-grooves, self-assembly-monolayer (SAM), and surface energy to control intermolecular interactions of the semiconductor polymer Poly (3-hexylthiophene) (P3HT) and form unidirectional P3HT nano-fibers. Varying process temperature and solvents can regulate molecular interactions and produce macroscopic order of nano-fibers with different microscopic. Because higher temperature and better solvent reduce the intermolecular interactions between polymer chains and suppress aggregates, then nano-grooves and SAM can be strong enough to align backbones of polymer and improve molecular order in nano-fibers. In order to investigate the correlation of molecular orientation and electronic structures, we design construct anisotropic quantum efficiency system by assembling integrating sphere, optical parts such as dichroic mirrors and filters, and automated instrumentation like stepper motors and spectrometers. Adjusting laser polarization with half-wave plates rotated by stepper motor, we can simultaneously measure the polarized Raman scattering spectrum and polarized fluorescent spectrum. Molecular vibration of polymer films relative to full-angle polarized light is obtained from polarized Raman scattering spectrum. Comparing the directional distribution of local molecular conformations with polarized fluorescent spectrum can indicate electronic structures in molecular-lever corresponding to polymorphic variation. Because the electron structure of soft semiconductors is highly correlated to molecular conformations, the conformation-regulated electronic structures in nano-fibers should influence the mechanical properties. Varying voltage applied on P3HT films and observe how the electronic modulation results in the vibration along particular different molecular axis. Through this system, we can mutually analyze the conversion between photonic and mechanical properties. In order to find relatively accurate luminescence efficiency, we also established an optic model as well as operating principle of integrating sphere, Fresnel equations, Bouguer–Lambert–Beer law which deducts the absorption of silicon wafer. Through this methodology, we can extract real absorption of polymer film and get relatively accurate photoluminescence quantum yield.
論文目次 口試合格證明書II
中文摘要 III
Abstract IV
誌謝 IX
目錄 X
圖目錄 XII
表目錄 XIV
第一章、緒論 1
1.1研究動機 1
1.2研究背景與文獻回顧 2
1.2.1 導電高分子 2
1.2.2 常見表徵方法 7
1.2.3自組裝單分子層(Self-Assembled Monolayer,SAM) 19
第二章、實驗部分 21
2.1實驗藥品及材料 21
2.1.1 高分子及其溶劑 21
2.1.2 自組裝單分子層及其溶劑 22
2.1.3 清洗用藥品 22
2.2實驗裝置 23
2.3 量測儀器 24
2.3.1.原子力顯微鏡(Atomic Force Microscope,AFM) 24
2.3.2. 微拉曼及微光激發光譜儀(Mirco Raman): 24
2.3.3.異向性量子效能系統 24
2.4 實驗流程 25
2.4.1 基板預先處理 25
2.4.2 自組裝單分子層沉積 25
2.4.3高分子薄膜沉積 25
第三章、結果與討論 27
3.1 高分子有序排列 27
3.1.1 極化拉曼散射頻譜與異向性(Anisotropy) 27
3.1.2 原子力顯微鏡與表面形貌 38
3.2 異向性量子效能系統 42
3.2.1 架設目的 42
3.2.2 架設原理 42
3.2.3 實際運作與計算 46
第四章、結論 57
第五章、參考文獻 58

參考文獻 1. Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications, (16), 578.
2. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., … Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347(6293), 539–541.
3. Liu, Q., Liu, Z., Zhang, X., Yang, L., Zhang, N., Pan, G., … Wei, J. (2009). Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT. Advanced Functional Materials, 19(6), 894–904.
4. Fu, Y., Lin, C., & Tsai, F.-Y. (2009). High field-effect mobility from poly(3-hexylthiophene) thin-film transistors by solvent–vapor-induced reflow. Organic Electronics, 10(5), 883–888.
5. Moulton, J., & Smith, P. (1992). Electrical and mechanical properties of oriented poly(3-alkylthiophenes): 2. Effect of side-chain length. Polymer, 33(11), 2340–2347.
6. Friedel, B., McNeill, C. R., & Greenham, N. C. (2010). Influence of Alkyl Side-Chain Length on the Performance of Poly(3-alkylthiophene)/Polyfluorene All-Polymer Solar Cells. Chemistry of Materials, 22(11), 3389–3398.
7. Mei, J., & Bao, Z. (2013). Side Chain Engineering in Solution-Processable Conjugated Polymers. Chemistry of Materials, 26(1), 604–615.
8. Xu, W.-L., Yang, X.-Y., Zheng, F., Jin, H.-D., & Hao, X.-T. (2015). Effect of alkyl side-chain length on the photophysical, morphology and photoresponse properties of poly(3-alkylthiophene). Journal of Physics D: Applied Physics, 48(48), 485501.
9. Liu, C., Wang, K., Gong, X., & Heeger, A. J. (2016). Low bandgap semiconducting polymers for polymeric photovoltaics. Chemical Society Reviews, 45(17), 4825–4846.
10. Robert S. Loewe, Paul C. Ewbank, Jinsong Liu, Lei Zhai, and Richard D. McCullough(2001).Regioregular, Head-to-Tail Coupled Poly(3-alkylthiophenes) Made Easy by the GRIM Method: Investigation of the Reaction and the Origin of Regioselectivit, Macromolecules, 34, 4324-4333
11. Tsoi, W. C., James, D. T., Kim, J. S., Nicholson, P. G., Murphy, C. E., Bradley, D. D. C., … Kim, J.-S. (2011). The Nature of In-Plane Skeleton Raman Modes of P3HT and Their Correlation to the Degree of Molecular Order in P3HT:PCBM Blend Thin Films. Journal of the American Chemical Society, 133(25), 9834–9843.
12. Mauer, R., Kastler, M., & Laquai, F. (2010). The Impact of Polymer Regioregularity on Charge Transport and Efficiency of P3HT:PCBM Photovoltaic Devices. Advanced Functional Materials, 20(13), 2085–2092.
13. Himmelberger, S., Vandewal, K., Fei, Z., Heeney, M., & Salleo, A. (2014). Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers. Macromolecules, 47(20), 7151–7157.
14. Khan, J. I., Ashraf, R. S., Alamoudi, M. A., Nabi, M. N., Mohammed, H. N., Wadsworth, A., … Laquai, F. (2019). P3HT Molecular Weight Determines the Performance of P3HT:O-IDTBR Solar Cells. Solar RRL.
15. Liu, F., Chen, D., Wang, C., Luo, K., Gu, W., Briseno, A. L., … Russell, T. P. (2014). Molecular Weight Dependence of the Morphology in P3HT:PCBM Solar Cells. ACS Applied Materials & Interfaces, 6(22), 19876–19887.
16. Dixon, A. G., Visvanathan, R., Clark, N. A., Stingelin, N., Kopidakis, N., & Shaheen, S. E. (2017). Molecular weight dependence of carrier mobility and recombination rate in neat P3HT films. Journal of Polymer Science Part B: Polymer Physics, 56(1), 31–35. doi:10.1002/polb.24531
17. Fukui, Kenichi; Yonezawa, Teijiro; Shingu, Haruo. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. The Journal of Chemical Physics. 1952, 20 (4): 722. Bibcode:1952JChPh..20..722F
18. Fuoco, D. (2012). A New Method for Characterization of Natural Zeolites and Organic Nanostructure Using Atomic Force Microscopy. Nanomaterials, 2(1), 79–91.
19. Jalili, N., & Laxminarayana, K. (2004). A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics, 14(8), 907–945.
20. Mannsfeld, S. C. B., Virkar, A., Reese, C., Toney, M. F., & Bao, Z. (2009). Precise Structure of Pentacene Monolayers on Amorphous Silicon Oxide and Relation to Charge Transport. Advanced Materials, 21(22), 2294–2298.
21. Fan, X., Zhao, S.-L., Chen, Y., Zhang, J., Yang, Q.-Q., Gong, W., … Xu, X.-R. (2015). Nano structure evolution in P3HT:PC61BM blend films due to the effects of thermal annealing or by adding solvent. Chinese Physics B, 24(7), 078401.
22. Müller-Buschbaum, P. (2014). The Active Layer Morphology of Organic Solar Cells Probed with Grazing Incidence Scattering Techniques. Advanced Materials, 26(46), 7692–7709
23. Di Carlo, A., Piacenza, F., Bolognesi, A., Stadlober, B., & Maresch, H. (2005). Influence of grain sizes on the mobility of organic thin-film transistors. Applied Physics Letters, 86(26), 263501.
24. Patterson, A. L. (1939). The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 56(10), 978–982.
25. Monshi, A., Foroughi, M. R., & Monshi, M. R. (2012). Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering, 02(03), 154-160.
26. Alexander, L., & Klug, H. P. (1950). Determination of Crystallite Size with the X-Ray Spectrometer. Journal of Applied Physics, 21(2), 137–142.
27. Stokes, A. R., Wilson, A. J. C., & Bragg, W. L. (1942). A method of calculating the integral breadths of Debye-Scherrer lines. Mathematical Proceedings of the Cambridge Philosophical Society, 38(03), 313.
28. Lilliu, S., Alsari, M., Bikondoa, O., Emyr Macdonald, J., & Dahlem, M. S. (2015). Absence of Structural Impact of Noble Nanoparticles on P3HT:PCBM Blends for Plasmon-Enhanced Bulk-Heterojunction Organic Solar Cells Probed by Synchrotron GI-XRD. Scientific Reports, 5(1).
29. Zenoozi, S., Agbolaghi, S., Poormahdi, E., Hashemzadeh-Gargari, M., & Mahmoudi, M. (2017). Verification of Scherrer formula for well-shaped poly(3-hexylthiophene)-based conductive single crystals and nanofibers and fabrication of photovoltaic devices from thin film coating. Macromolecular Research, 25(8), 826–840.
30.. Fan, X., Zhao, S.-L., Chen, Y., Zhang, J., Yang, Q.-Q., Gong, W., … Xu, X.-R. (2015). Nano structure evolution in P3HT:PC61BM blend films due to the effects of thermal annealing or by adding solvent. Chinese Physics B, 24(7), 078401.
31. Lee, S., Jeon, H., Jang, M., Baek, K.-Y., & Yang, H. (2015). Tunable Solubility Parameter of Poly(3-hexyl thiophene) with Hydrophobic Side-Chains to Achieve Rubbery Conjugated Films. ACS Applied Materials & Interfaces, 7(2), 1290–1297.
32. Roders, M., Pitch, G. M., Garcia-Vidales, D., & Ayzner, A. L. (2018). Influence of Molecular Excluded Volume and Connectivity on the Nanoscale Morphology of Conjugated Polymer/Small Molecule Blends. The Journal of Physical Chemistry C, 122(7), 3700–3708.
33. Yang, H., Zhang, R., Wang, L., Zhang, J., Yu, X., Liu, J., … Han, Y. (2015). Face-On and Edge-On Orientation Transition and Self-Epitaxial Crystallization of All-Conjugated Diblock Copolymer. Macromolecules, 48(20), 7557–7566.
34. Gardiner, D.J. Practical Raman spectroscopy. Springer-Verlag. 1989. ISBN 978-0387502540.
35.Paternò, G. M., Robbiano, V., Fraser, K. J., Frost, C., García Sakai, V., & Cacialli, F. (2017). Neutron Radiation Tolerance of Two Benchmark Thiophene-Based Conjugated Polymers: the Importance of Crystallinity for Organic Avionics. Scientific Reports, 7(1). doi:10.1038/srep41013
36. Gao, Y., & Grey, J. K. (2009). Resonance Chemical Imaging of Polythiophene/Fullerene Photovoltaic Thin Films: Mapping Morphology-Dependent Aggregated and Unaggregated C═C Species. Journal of the American Chemical Society, 131(28), 9654–9662. doi:10.1021/ja900636z
37. Otieno, F., Mutuma, B. K., Airo, M., Ranganathan, K., Erasmus, R., Coville, N., & Wamwangi, D. (2017). Enhancement of organic photovoltaic device performance via P3HT:PCBM solution heat treatment. Thin Solid Films, 625, 62–69.
38. John D. Robert and Marjorie C. Caserio (1977) Basic Principles of Organic Chemistry, second edition. W. A. Benjamin, Inc. , Menlo Park, CA. ISBN 0-8053-8329-8.
39. Zhao, Q., Liu, J., Wang, H., Li, M., Zhou, K., Yang, H., & Han, Y. (2015). Balancing the H- and J-aggregation in DTS(PTTh2)2/PC70BM to yield a high photovoltaic efficiency. Journal of Materials Chemistry C, 3(31), 8183–8192.
40. Kasha, M.(1950).Characterization of Electronic Transitionsin Complex Molecules, Discussions of the Faraday Society, 9: p.14-19
41. Goel, S., Sinha, N., Yadav, H., Joseph, A. J., Hussain, A., & Kumar, B. (2017). Optical, piezoelectric and mechanical properties of xylenol orange doped ADP single crystals for NLO applications. Arabian Journal of Chemistry.
42. Spano, F. C., & Silva, C. (2014). H- and J-Aggregate Behavior in Polymeric Semiconductors. Annual Review of Physical Chemistry, 65(1), 477–500.
43. Clark, J., Chang, J.-F., Spano, F. C., Friend, R. H., & Silva, C. (2009). Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Applied Physics Letters, 94(16), 163306
44.Chang, M., Lee, J., Chu, P.-H., Choi, D., Park, B., & Reichmanis, E. (2014). Anisotropic Assembly of Conjugated Polymer Nanocrystallites for Enhanced Charge Transport. ACS Applied Materials & Interfaces, 6(23), 21541–21549.
45. Jaffe, H. H., & Miller, A. L. (1966). The fates of electronic excitation energy.Journal of Chemical Education, 43(9), 469. doi:10.1021/ed043p469
46.Priestley, E. B., & Haug, A. (1968). Phosphorescence Spectrum of Pure Crystalline Naphthalene. The Journal of Chemical Physics, 49(2), 622–629.
47. P., Atkins, P., de Paula, J. Atkins' Physical Chemistry, 8th edition (2006), page 494, Oxford University Press. ISBN 0-7167-8759-8
48. Casalini, S., Bortolotti, C. A., Leonardi, F., & Biscarini, F. (2017). Self-assembled monolayers in organic electronics. Chemical Society Reviews, 46(1), 40–71.
49. SINGH, M., Kaur, N., & Comini, E. (2020). Role of Self-Assembled Monolayers in Electronic Devices. Journal of Materials Chemistry
50. Islam, M. M., Pola, S., & Tao, Y.-T. (2011). Effect of Interfacial Structure on the Transistor Properties: Probing the Role of Surface Modification of Gate Dielectrics with Self-Assembled Monolayer Using Organic Single-Crystal Field-Effect Transistors. ACS Applied Materials & Interfaces, 3(6), 2136–2141.
51. Otieno, F., Mutuma, B. K., Airo, M., Ranganathan, K., Erasmus, R., Coville, N., & Wamwangi, D. (2017). Enhancement of organic photovoltaic device performance via P3HT:PCBM solution heat treatment. Thin Solid Films, 625, 62–69.
52. Abdulkarim, Y. I., Deng, L., Muhammad, F. F., & He, L. (2019). Enhanced light absorption in the organic thin films by coating cross-shaped metamaterial resonators onto the active layers. Results in Physics, 102338.
53. Handbook of Optical Constants of Solids, Edward D. Palik. Academic Press, Boston, 1985
54. M. A. Green and Keevers, M. J., “Optical properties of intrinsic silicon at 300 K”, Progress in Photovoltaics: Research and Applications, vol. 3, pp. 189 - 192, 1995.
55. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients”, Solar Energy Materials and Solar Cells, vol. 92, pp. 1305–1310, 2008.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw