系統識別號 U0026-2508202000223800
論文名稱(中文) 在物聯網環境中具有調適排程概念的軟體定義網路架構
論文名稱(英文) Software Defined Networking Architecture with Adaptive Scheduling Concept In Internet of Thing Environment
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 陳昱廷
研究生(英文) Yu-Ting Chen
學號 P76071153
學位類別 碩士
語文別 英文
論文頁數 49頁
口試委員 指導教授-蘇銓清
中文關鍵字 物聯網  自適應排程  基因演算法  形式化方法 
英文關鍵字 IoT  Adaptive Scheduling  Genetic Algorithm  Formal Method 
中文摘要 隨著物聯網的蓬勃發展,延伸出許多問題,舉例來說物聯網廣泛的在多個不同的子網路中佈署,而其中使用不同的無線通信方式極其異構,要如何將這些子網路有效的整合成一個無縫的通信平台;還有在動態環境中管理這些開放、地理上分散的異構網路是過去幾年的主要研究課題。
其中一種被廣為使用的方法為軟體定義網路的架構,透過中心化的方式將拓樸上的資訊彙整以計算出全域的最佳路由流,而有別於傳統上軟體定義網路大多架構在Data Center Network這種具有高速通訊且單一的網路,我們發現有過去的研究嘗試將軟體定義網路方式架構在基礎設施尚不完善且具有高度異構的自發網路(Spontaneous Network),使得自發網路在多跳異構節點分派封包的基礎之上有能夠考慮應用層面的QoS能力,並且提出一種優先權的機制強化特定應用占用網路資源的概念。
本文將繼續過往研究的架構,加入路由流排程(flow routing scheduling)的概念,使用基因演算法幫助controller解決多限制的路徑選擇這個NP-complete的難題,在其中透過Formal Method合理的預估網路資源的負載,並只在過載的鏈路啟用分配網路資源占用時間的機制,使得我們的軟體定義網路架構能夠在密集與稀疏的網路拓樸環境當中自我調適出最佳化排程的策略。
英文摘要 With the development of the Internet of Things, many problems have been extended. For example, the Internet of Things is widely deployed in multiple different sub-networks, and the use of different wireless communication methods is extremely heterogeneous. How to effective integration these sub-networks into a seamless communication platform; Man-aging geographically dispersed heterogeneous networks in a dynamic environment has been a major research in the past few years.
One of the used methods is the SDN (Software Defined Networking Architecture), which aggregates topological information through a Centralized View to Calculate the best route flow for the entire domain, but deploying SDN in IoT is different from in tradition environment. We have found that past research attempts to build a SDN method on a Spontaneous Network with infrastructure-less and a highly heterogeneous network, enable consider application-level QoS capabilities on the basis of multi-hop heterogeneous nodes dispatching packets, and proposes a priority mechanism to strengthen the concept of specific applications occupying network resources.
However, in this study, although consideration was given to assigning priority to network resource occupation time on a single path, it did not consider the possibility of having the opportunity to choose other paths in the network topology. If only time schedule is achieved and the path is spontaneously generated by the local end, it is very likely that only a single application flow can achieve better QoS, and it is compressed to the possibility that other applications can choose other sub-optimal routes.
This article will continue the architecture of the previous research and add the concept of flow routing scheduling, use Genetic Algorithm to help SDN controller solve hte NP-Complete problem of multi-restricted path selection, in which the Formal Method is used to reasonably estimate the load of network resources, and the mechanism of allocating network resource occupation time is activated only on Overloaded links, enabling our SDN architecture to self-adjust to optimal scheduling strategies in dense and sparse network topology environments.
論文目次 Acknowledgements VIII
List of Tables X
List of Figures XI
1 Introduction 1
2 Background and Related Work 4
2.1 Spontaneous Networking 4
2.2 Software-Defined Networking 5
2.2.1 SDN Architecture 5
2.2.2 OpenFlow Protocol 5
2.3 SDN for Intenet of Things 7
2.4 Genetic Algorithm 7
2.5 Motivation 8
3 System Architecture 10
3.1 Real Ad hoc Multi-hop Peer-to-peer (RAMP) Middleware 10
3.1.1 RAMP Core Layer 11
3.1.2 RAMP Service Layer 14
3.1.3 SDN Client 16
3.1.4 SDN Controller 20
3.2 Formal Method 23
3.3 Flow Scheduling 28
3.3.1 Definition of chromosome 28
3.3.2 Genetic Algorithm 29
4 Implement and Evaluation 34
4.1 Time Complexity Analysis 34
4.2 Experiment Setup 36
4.3 Evaluation 41
5 Conclusion and Future Work 45
6 Reference 46
7 Appendix 49

參考文獻 [1] A.Al-Fuqaha, M.Guizani, M.Mohammadi, M.Aledhari, andM.Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Commun. Surv. Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.
[2] R.Khan, S. U.Khan, R.Zaheer, andS.Khan, “Future internet: The internet of things architecture, possible applications and key challenges,” Proc. - 10th Int. Conf. Front. Inf. Technol. FIT 2012, pp. 257–260, 2012.
[3] ONF SDN. Available on July 19,2020: https://www.opennetworking.org/onf-sdn-projects/
[4] OpenFlow. Availavle on July 19, 2020: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
[5] V. A.Hax, N. L.Duarte Filho, S. S. da C.Botelho, andO. M.Mendizabal, “ROS as a middleware to Internet of Things,” J. Appl. Comput. Res., vol. 2, no. 2, pp. 91-97, 2013.
[6] Diode IoT. Availavle on July 19, 2020: https://diode.io/
[7] C. H.Hu, “Research on Web3.0 application in the resources integration portal,” Proc. 2012 2nd Int. Conf. Bus. Comput. Glob. Informatiz. BCGIN 2012, pp. 728–730, 2012.
[8] P.Bellavista, A.Corradi, andC.Giannelli, “The real ad-hoc multi-hop Peer-to-peer (RAMP) middleware: An easy-to-use support for spontaneous networking,” Proc. - IEEE Symp. Comput. Commun., pp. 463–470, 2010.
[9] C.Giannelli, P.Bellavista, andD.Scotece, “Software Defined Networking for Quality-aware Management of Multi-hop Spontaneous Networks,” 2018 Int. Conf. Comput. Netw. Commun. ICNC 2018, pp. 561–566, 2018.
[10] R.Leela, N.Thanulekshmi, andS.Selvakumar, “Multi-constraint Qos Unicast Routing Using Genetic Algorithm (MURUGA),” Appl. Soft Comput. J., vol. 11, no. 2, pp. 1753–1761, 2011.
[11] R.Bruzgiene, L.Narbutaite, andT.Adomkus, “MANET Network in Internet of Things System,” Ad Hoc Networks, pp. 89-114, 2017.
[12] R.Lacuesta, J.Lloret, S.Sendra, andL.Peñalver, “Spontaneous ad hoc mobile cloud computing network,” Sci. World J., vol. 2014, pp. 1-19, 2014.
[13] Z.Qin, L.Iannario, C.Giannelli, P.Bellavista, andN.Venkatasubramanian, “Smart communications via a tree-based overlay over multiple and heterogeneous (TOMH) spontaneous networks,” 2013 Int. Conf. Smart Commun. Netw. Technol. SaCoNeT 2013, vol. 1, pp. 1-6, 2013.
[14] P.Wan, J.Yan, Z. G.Cao, andJ. L.Wang, “Dynamic source routing algorithm in low-earth orbit satellite constellation,” Int. Conf. Commun. Technol. Proceedings, ICCT, no. 60672106, pp. 1-4, 2006.
[15] Z.Qin, G.Denker, C.Giannelli, P.Bellavista, andN.Venkatasubramanian, “A software defined networking architecture for the internet-of-things,” IEEE/IFIP NOMS 2014 - IEEE/IFIP Netw. Oper. Manag. Symp. Manag. a Softw. Defin. World, pp. 1–9, 2014.
[16] S. K.Tayyaba, M. A.Shah, O. A.Khan, andA. W.Ahmed, “Software defined network (SDN) based internet of things (IoT): A road ahead,” ACM Int. Conf. Proceeding Ser., vol. Part F1305, no. December 2018, pp. 1-8, 2017.
[17] A.DeGante, M.Aslan, andA.Matrawy, “Smart wireless sensor network management based on software-defined networking,” 2014 27th Bienn. Symp. Commun. QBSC 2014, pp. 71–75, 2014.
[18] D.E. Goldberg, ‘Genetic Algorithms in Search, Optimization, and Machine Learning’,
Addison–Wesley, 1989.
[19] Z.Qin, G.Denker, C.Talcott, andN.Venkatasubramanian, “Achieving resilience of heterogeneous networks through predictive, formal analysis,” HiCoNS 2013 - Proc. 2nd ACM Int. Conf. High Confid. Networked Syst. Part CPSWeek 2013, pp. 85–92, 2013.
[20] W. H.Hsu, S. C.Yeh, Y. P.Shieh, andC. H.Hsieh, “Web-based QoE measurement framework,” Proc. - 2013 Int. Conf. Signal-Image Technol. Internet-Based Syst. SITIS 2013, pp. 265–272, 2013.
[21] L.Kevin andM.Baker, “Measuring link bandwidths using a deterministic model of packet delay,” Comput. Commun. Rev., vol. 30, no. 4, pp. 283–294, 2000.
[22] Z.Wang, J.Crowcroft, andA. S.Criterion, “Quality-of-Service Routing for Supporting Multimedia Applications,” vol. 14, no. 7, pp. 1228–1234, 1996.
[23] Z.Qin, L.Iannario, C.Giannelli, P.Bellavista, G.Denker, andN.Venkatasubramanian, “MINA: A reflective middleware for managing dynamic multinetwork environments,” IEEE/IFIP NOMS 2014 - IEEE/IFIP Netw. Oper. Manag. Symp. Manag. a Softw. Defin. World, pp. 1–4, 2014.
[24] R.DosReis Fontes andC. E.Rothenberg, “Mininet-WiFi: A platform for hybrid physical-virtual software-defined wireless networking research,” SIGCOMM 2016 - Proc. 2016 ACM Conf. Spec. Interes. Gr. Data Commun., no. August, pp. 607–608, 2016.
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-01起公開。

  • 如您有疑問,請聯絡圖書館