進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508201800550100
論文名稱(中文) 固相燒結法合成硫和鍶共摻雜之鉍銅硒氧化合物及其熱電性質研究
論文名稱(英文) Solid state sintering synthesis and thermoelectric properties of S and Sr co-doped BiCuSeO
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 陳威宇
研究生(英文) Wei-Yu Chen
學號 N56051530
學位類別 碩士
語文別 中文
論文頁數 69頁
口試委員 指導教授-齊孝定
口試委員-黃啟祥
口試委員-劉浩志
口試委員-許文東
中文關鍵字 熱電材料  鉍銅硒氧  共摻雜  席貝克係數  功率因子 
英文關鍵字 thermoelectric materials  BiCuSeO  co-doped  Seebeck coefficient 
學科別分類
中文摘要 近年來,能源危機與環保議題讓人們開始尋求潔淨的替代能源以求永續發展。熱電材料可以利用廢熱,透過溫差致電的方式發電,而氧化物熱電材料,更具有低汙染性、工作溫度高、製程簡易等優點。其中,鉍銅硒氧則為近年文獻研究中極具潛力的氧化物熱電材料。
鉍銅硒氧為P型半導體,擁有特殊的層狀結構,由絕緣層[Bi2O2]2+ 與導電層[Cu2Se2]2- 沿C軸相互交疊而成,絕緣層作為儲存載子的地方,導電層則是載子流動的地方,此結構造就了鉍銅硒氧的高席貝克係數與低熱傳導係數,諸多文獻利用摻雜低價數離子的方式(如Sr2+、Ba2+、Ca2+) 增加載子濃度以提升其電導率,或透過摻雜硫導入缺陷增加聲子散射以降低熱傳導率,最終目的都是提升其熱電轉換效率。
本研究使用固相反應燒結法合成出共摻雜鍶與硫的鉍銅硒氧多晶塊材。並利用X光繞射儀、高解析掃描式電子顯微鏡、熱重分析儀、霍爾量測系統、席貝克係數量測系統、四點探針電阻量測系統等儀器與分析方法,研究鉍銅硒氧在共摻雜前後的結構、熱穩定性與熱電性質差異。
於750°C下合成的Bi1-x5SrxCuSe0.9S0.1O 樣品,經XRD分析得知在低摻雜量時能維持其純相,但到了硫摻雜量10%、鍶摻雜量5%時,二次相如Bi與Bi4Se3大量析出,鍶摻雜量10%之後的二次相繞射峰值更是逼近鉍銅硒氧主相的繞射峰強度。熱穩定性的量測,在N2環境下的TGA分析得知摻雜鍶與硫樣品的熱穩定性比未摻雜樣品還好,但在大氣下的分析結果則是相反,大氣下共摻雜樣品的熱重損失率是在N2環境下的10倍,由於硫是易揮發的元素,大氣下升溫更不穩定容易脫離其主相結構,SEM分析中亦能觀察到室溫中共摻雜樣品的鉍銅硒氧層狀結構相對未摻雜樣品有些微孔洞,推測即是硫的揮發所導致。
電性分析部分,席貝克分析主要受到摻雜量的影響,隨著鍶的摻雜量增加,載子濃度增加促使席貝克係數降低,而電導率除了受到摻雜量的影響,鍶摻雜量10%以上時出現的電導率突升,更可以歸因於析出的雜相Bi與Bi4Se3在鉍銅硒氧中串連形成通路。而最終的量測結果,可以得知鉍銅硒氧在硫摻雜量10%、鍶摻雜量15%時具有最大的功率因子,在量測溫度360°C能獲得其值為0.91μV/cmK^2,比未摻雜的鉍銅硒氧還高了6倍之多。
英文摘要 In recent decades, oxide thermoelectric materials have been widely investigated. They have been shown to have many advantages, such as high operation temperatures due to great thermal stability, low pollution and a simple manufacturing process. BiCuSeO, as a promising oxide thermoelectric material, has caught the attention of scientists due to its high Seebeck coefficient and low thermal conductivity. In this work, we report on the effects of an Sr and S dual-site substitution on the thermoelectric properties of pristine BiCuSeO and Bi1-xSrxCuSe0.9S0.1O (x=0.0 ~ 0.15).These samples were prepared using a two-step solid state reaction method. First we tried different sintering temperatures to prepare the Srdoped sample. Then we tried different sintering temperatures to prepare the S and Sr co-doped sample in order to determine which sintering temperature would obtain the most pure phase. Finally, S and Sr co-doped BiCuSeO were sintered at 750°C. The samples were analyzed using XRD, SEM, EDS and TGA to observe how the dopants affected the microstructure and thermal stability. The Seebeck coefficient and electrical conductivity were also measured to determine the thermoelectric properties of samples. A maximum power factor of 0.91μV/cmK2 was achieved for Bi0.85Sr0.15CuSe0.9S0.1O at 360°C due to its moderate Seebeck coefficient and high electrical conductivity. The value was approximately 6 times larger than that of the pristine BiCuSeO.
論文目次 目錄
摘要........................................I
ABSTRACT...................................III
誌謝.......................................IX
目錄........................................X
表目錄......................................XII
圖目錄.........................................XIII
第一章 緒論.........................................1
1-1 前言............................................1
1-2 研究動機與目的....................................5
第二章 理論基礎與文獻回顧.............................6
2-1 熱電效應之理論基礎..............................6
2-1-1 席貝克效應(Seebeck effect)...............7
2-1-2 帕爾帖效應(Peltier effect).................9
2-1-3 湯姆森效應(Thomson effect).................11
2-2 熱電優值與熱電功率因子.......................13
2-2-1 席貝克係數(Seebeck coefficient)...........17
2-2-2 電導率 (conductivity).....................19
2-2-3 熱傳導率(thermal conductivity)...........21
2-3 熱電材料的熱電轉化效率改善.................22
2-3-1 載子濃度對材料熱電性質之影響.............23
2-3-2 聲子對熱電性質的影響.....................25
2-4氧化物熱電材料.............................27
2-4-1 鉍銅硒氧之結構與特性....................28
2-4-2 鉍銅硒氧之文獻回顧........................29
第三章 實驗方法與步驟..........................34
3-1 樣品製備..................................34
3-1-1燒結條件選擇............................34
3-1-2定溫下共摻雜樣品製備.......................35
3-2 材料性質量測與分析..........................37
3-2-1 X光繞射儀(XRD)...........................37
3-2-2 掃描式電子顯微鏡(SEM)........................38
3-2-3 熱重分析儀(TGA)................................39
3-2-4 霍爾量測系統...............................40
3-2-5 席貝克係數量測系統...............................41
3-2-6 四點探針電阻量測系統..........................42
第四章 結果與討論...............................43
4-1 BiCuSeO燒結條件選擇..............................43
4-2 燒結溫度750°C下之硫與鍶共摻雜熱電性質研究...........47
4-2-1 XRD結果分析................................47
4-2-2 晶格常數與晶粒大小比較............................49
4-2-3 結構與密度分析...............................52
4-2-4 熱重分析.................................56
4-2-5 席貝克係數與霍爾量測...........................58
4-2-6 導電率量測分析................................61
4-2-7 功率因子計算.............................63
第五章 結論...........................................64
參考文獻 .............................................66
參考文獻 參考文獻
[1] G. J. Snyder and e. S. Toberer, "Complex thermoelectric materials," nature materials, vol. 7, p. 10, 2008.
[2] C. Han, Z. Li, and S. Dou, "Recent progress in thermoelectric materials," Chinese Science Bulletin, vol. 59, no. 18, p. 19, 2014.
[3] Rama Venkatasubramanian, Edward Siivola, Thomas Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," NATURE, vol. 413, p. 6, 2001.
[4] X. Zhang and L. Zhao, "Thermoelectric materials: Energy conversion between heat and electricity," Journal of Materiomics, vol. 1, p. 14, 2015.
[5] J. Martin, T. Tritt, and C. Uher, "High temperature Seebeck coefficient metrology," Journal of Applied Physics, vol. 108, p. 12, 2010.
[6] Y. G. Gurevich and J. E. Velázquez-Pérez, "Peltier Effect in Semiconductors," in Wiley Encyclopedia of Electrical and Electronics Engineering, J. G. Webster, Ed.: John Wiley & Sons, 2014, p. 21.
[7] N. W. Ashcroft and N. D. Mermin, Solid state physics. New York: Holt, Rinehart & Winston, 1976.
[8] W. Thomson, "Account of Researches in Thermo-Electricity," Proceedings of the Royal Society of London, vol. 7, p. 10, 1854.
[9] Y. Apertet and C. Goupil, "On the fundamental aspect of the first Kelvin's relation in thermoelectricity," International Journal of Thermal Sciences, vol. 104, p. 3, 2016.
[10] H. S. Kim, W. Liu, G. Chen, C.-W. Chu, and Z. Ren, "Relationship between thermoelectric figure of merit and energy conversion efficiency," Proc Natl Acad Sci, vol. 112, p. 6, 2015.
[11] A. M. Dehkordi, M. Zebarjadi, J. He, and T. M. Tritt, "Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials," Materials Science and Engineering R, vol. 97, p. 22, 2015.
[12] J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, "New and Old Concepts in Thermoelectric Materials," Thermoelectrics, vol. 48, p. 24, 2009.
[13] T. M. Tritt, Thermal Conductivity Theory, Properties, and Applications. Springer US, 2004.
[14] E. S. Toberer, L. L. Baranowski, and C. Dames, "Advances in Thermal Conductivity," The Annual Review of Materials Research, vol. 42, p. 31, 2012.
[15] P. Vaqueiro and A. V. Powell, "Recent developments in nanostructured materials for high-performance thermoelectrics," Journal of Materials Chemistry, vol. 20, p. 8, 2010.
[16] L. N. Kholodkovskaya, L. G. Akselrud, A. M. Kusainova, V. A. Dolgikh, and B. A. Popovkin, "BiCuSeO: Synthesis and Crystal Structure," Materials Science Forum, vol. 133-136, p. 4, 1993.
[17] L.-D. Zhao, J. He, D. Berardan, Y. Lin, J.-F. Li, C.-W. Nan, and N. Dragoe, "BiCuSeO oxyselenides: new promising thermoelectric materials," Energy & Environmental Science, vol. 7, p. 25, 2014.
[18] Y. Liu, L.-D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B.-P. Zhang, D. Berardan, N. Dragoe, Y.-H. Lin, C.-W. Nan, J.-F. Li, and H. Zhu, "Remarkable Enhancement in Thermoelectric Performance of BiCuSeO by Cu Deficiencies," American Chemical Society, vol. 133, p. 4, 2011.
[19] M. Yasukawa, K. Ueda, and H. Hosono, "Thermoelectric properties of layered oxyselenides La1-xSrxCuOSe (X=0 to 0.2)," Journal of Applied Physics, vol. 95, p. 4, 2004.
[20] A.M.Kusainova, P.S.Berdonosov, L.G.Akselrud, L.N.Kholodkovskaya, V.A.Dolgikh, and B.A.Popovkin, "New Layered Compounds with the General Composition (MO) (CuSe), Where M = Bi, Nd, Gd, Dy, and BiOCuS: Syntheses and Crystal Structure," Journal of Solid State Chemistry, vol. 112, p. 3, 1994.
[21] L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, "Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials," APPLIED PHYSICS LETTERS, vol. 97, p. 3, 2010.
[22] J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, and L.-D. Zhao, "A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides," Energy & Environmental Science, vol. 5, p. 5, 2012.
[23] J. Sui, J. Li, J. He, Y.-L. Pei, D. Berardan, H. Wu, N. Dragoe, W. Caia, and L.-D. Zhao, "Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides," Energy & Environmental Science, vol. 6, p. 5, 2013.
[24] X. Zhang, C. Chang, Y. Zhou, and L. Zhao, "BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective," Materials, vol. 10, no. 2, p. 198, 2017.
[25] C. Barreteau, D. Berardan, and N. Dragoe, "Studies on the thermal stability of BiCuSeO," Journal of Solid State Chemistry, vol. 222, p. 7, 2015.
[26] A. Bhaskar, R. Lai, K. Chang, and C. Liu, "High thermoelectric performance of BiCuSeO prepared by solid state reaction and sol-gel process," Scripta Materialia, vol. 134, p. 5, 2017.
[27] Y. Liu, L.-D. Zhao, Y. Zhu, Y. Liu, F. Li, M. Yu, D.-B. Liu, W. Xu, Y.-H. Lin, and C.-W. Nan, "Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO via a Dual-Doping Approach," Advanced Energy Materials, vol. 6, p. 9, 2016.
[28] Y. Sun, C. Zhang, C. Cao, J. Fu, and L. Peng, "Enhanced Thermoelectric Properties in BiCuSeO Oxyselenides via Zn and S Dual-Site Substitution," Journal of Electronic Materials, vol. 46, p. 7, 2017.
[29] G. Ren, S. Butt, C. zeng, Y. Liu, B. Zhan, J. Lan, Y. Lin, and C. Nan, "Electrical and Thermal Transport Behavior in Zn-Doped BiCuSeO Oxyselenides," Journal of Electronic Materials, vol. 44, p. 5, 2015.
[30] D. Berardan, J. Li, E. Amzallag, S. Mitra, J. Sui, W. Cai, and N. Dragoe, "Structure and Transport Properties of the BiCuSeO-BiCuSO Solid Solution," Materials, vol. 8, p. 16, 2015.
[31] J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei, and L.-D. Zha, "Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides," Journal of Alloys and Compounds, vol. 551, p. 5, 2013.
[32] C. e. Barreteau, D. B´erardan, L. Zhaoa, and N. Dragoe, "Influence of Te substitution on the structural and electronic properties of thermoelectric BiCuSeO†," Journal of Materials Chemistry A, vol. 1, p. 6, 2013.
[33] J.-L. Lan, Y.-C. Liu, B. Zhan, Y.-H. Lin, B. Zhang, X. Yuan, W. Zhang, W. Xu, and C.-W. Nan, "Enhanced Thermoelectric Properties of Pb-doped BiCuSeO Ceramics," Advanced Materials, vol. 25, p. 5, 2013.
[34] Y. Liu, J. Liu, B. Zhang, and Y. Lin, "Thermoelectric Properties of Ni Doped p-Type BiCuSeO Oxyselenides," Key Engineering Materials, vol. 602-603, p. 4, 2014.
[35] J. Li, J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Caia, and L.-D. Zhao, "The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material," Journal of Materials Chemistry A, vol. 2, p. 4, 2014.
[36] Y.-L. Pei, H. Wu, D. Wu, F. Zheng, and J. He, "High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3D Modulation Doping," Journal of the American Chemical Society, vol. 136, p. 7, 2014.
[37] Y. Liu, J. Ding, B. Xu, J. Lan, Y. Zheng, B. Zhan, B. Zhang, Y. Lin, and C. Nan, "Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure," APPLIED PHYSICS LETTERS, vol. 106, p. 5, 2015.
[38] Y.-c. Liu, Y.-h. Zheng, B. Zhana, K. Chena, S. Butt, B. Zhang, and Y.-h. Lin, "Influence of Ag doping on thermoelectric properties of BiCuSeO," Journal of the European Ceramic Society, vol. 35, p. 5, 2015.
[39] M. Zhang, J. Yang, Q. Jiang, L. Fu, Y. Xiao, Y. Luo, D. Zhang, Y. Cheng, and Z. Zhou, "Multi-role of Sodium Doping in BiCuSeO on High Thermoelectric Performance," Journal of Electronic Materials, vol. 44, p. 7, 2015.
[40] D. Berthebaud, E. Guilmeau, O. I. Lebedev, A. Maignan, J. Gamon, and P. Barboux, "The BiCu1-xOS oxysulfide: Copper deficiency and electronic properties," Journal of Solid State Chemistry, vol. 237, p. 8, 2016.
[41] S. Mizuno, M. Ishizawa, H. Fujishiro, T. Naito, H. Katsui, and T. Goto, "Ball milling effects for induced carriers and reduced grain size on thermoelectric properties in Bi1-xSrxCuSeO (x= 0; 0.1)," Japanese Journal of Applied Physics, vol. 55, p. 7, 2016.
[42] M. U. Farooq, S. Butt, K. Gao, Y. Zhu, X. Sun, X. Pang, S. U. Khan, F. Mohmed, A. Mahmood, N. Mahmood, and W. Xu, "Cd-doping a facile approach for better thermoelectric transport properties of BiCuSeO oxyselenides," RSC Advances, vol. 6, p. 9, 2016.
[43] C.-L. Hsiao and X. Qi, "The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides," Acta Materialia, vol. 102, p. 9, 2016.
[44] M.-K. Han, Y.-S. Jin, B. K. Yu, W. Choi, T.-S. You, and S.-J. Kim, "Sulfur to oxygen substitution in BiOCuSe and its effect on the thermoelectric properties," Journal of Materials Chemistry A, vol. 4, p. 7, 2016.
[45] Y. Liu, Y. Zhou, J. Lan, C. Zeng, Y. Zheng, B. Zhan, B. Zhang, Y. Lin, and C.-W. Nan, "Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenides," Journal of Alloys and Compounds, vol. 662, p. 5, 2016.
[46] Y. Sun, C. Zhang, C. Cao, J. Fu, and L. Peng, "Enhanced thermoelectric properties and electronic structures of p-type BiCu1-xAgxSeO ceramics," Ceramics International, vol. 43, p. 7, 2017.
[47] S. Das, A. Ramakrishnan, K. Chen, D. K. Misra, and R. C. Mallik, "Thermoelectric properties of BiCuSeO with bismuth and oxygen vacancies," Journal of Physics D: Applied Physics, vol. 51, p. 9, 2018.
[48] B. Feng, G. Li, Z. Pan, Y. Hou, C. Zhang, C. Jiang, J. Hu, Q. Xiang, Y. Li, Z. He, and X. a. Fan, "Effect of Ba and Pb dual doping on the thermoelectric properties of BiCuSeO ceramics," Materials Letters, vol. 217, p. 5, 2018.
[49] Q. D. Gibson, L. M. Schoop, A. P. Weber, H. Ji, S. Nadj-Perge, I. K. Drozdov, H. Beidenkopf, J. T. Sadowski, A. Fedorov, A. Yazdani, T. Valla, and R. J. Cava, "Termination-dependent topological surface states of the natural superlattice phase Bi4Se3," PHYSICAL REVIEW B, vol. 88, p. 5, 2013.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw