進階搜尋


下載電子全文  
系統識別號 U0026-2508201713583600
論文名稱(中文) 利用永久性散射體雷達差分干涉法與全球衛星定位系統監測菲律賓民都洛島現今之地表變形
論文名稱(英文) Present-day Crustal Deformation of Mindoro Island, Philippines Derived from PSInSAR and GPS Observations
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 105
學期 2
出版年 106
研究生(中文) 方昱程
研究生(英文) Yu-Cheng Fang
學號 P66041017
學位類別 碩士
語文別 英文
論文頁數 87頁
口試委員 指導教授-景國恩
口試委員-顏君毅
口試委員-張午龍
中文關鍵字 民都洛島  全球定位系統  永久性散射體差分干涉法  地表變形  隱沒帶至碰撞轉換帶  塊體旋轉 
英文關鍵字 Mindoro Island  GPS  PSInSAR  Crustal deformation  Transition zone from subduction to collision  Block rotation 
學科別分類
中文摘要 菲律賓民都洛島(Mindoro Island)位於巴拉望微大陸塊體和菲律賓活動帶的碰撞邊界,為弧陸碰撞的產物。位於馬尼拉海溝的南端,民都洛島同時也被視為是隱沒帶至走向滑移斷層之轉換帶。民都洛島地震活動主要分布在島的北部,其成因和馬尼拉海溝的隱沒活動有關,而民都洛島中部和南部的地震活動相對稀疏。由於缺乏足夠的觀測資料,現今民都洛島位於轉換帶之構造活動並不清楚。為了瞭解民都洛島之地表變形特性,本研究利用Bernese軟體解算民都洛島2011至2015年8個GPS連續站在ITRF2014框架下之觀測資料,並採用最小二乘法計算相對於測站JOSE之速度場。在水平速度場方面,民都洛島呈現逆時針旋轉的趨勢,並且在島的南部和北部有個約25 mm/yr的速度落差。在垂直速度場方面無明顯的速度差異。根據應變速率分析結果,民都洛島的逆時針旋轉率約10.5°/Myr,而北部有一顯著之西北西-東南東向伸張量(180 nstrain/yr),其應變累積可能來自於民都洛島碰撞產生之塊體旋轉及斷層活動。由於GPS連續站的分布太稀疏,無法解析島內之活動斷層,因此本研究利用永久散射體合成孔徑雷達干涉技術(PSInSAR)觀測民都洛島地表變形,增加空間解析度。本研究使用ALOS-1/PALSAR於2007至2011年的雷達影像,利用StaMPS方法流程獲得視衛星方向(LOS)速度場,並結合ERA模型進行大氣延遲校正(TRAIN軟體)。此外,本研究利用ALOS-1升軌和降軌的資料,將LOS速度分解成東西向及垂直向速度場,進一步分析地表變形之特性。PSInSAR的結果顯示民都洛島有三個區域有明顯的速度落差,其中有些構造並沒有被前人研究所發現。最主要的活動構造從民都洛島的中北部延著中央山脊延伸到南部,在構造的左側有約10 mm/yr的抬升,其成因可能和民都洛島西南部平行走向斷層系統之擠壓有關。在民都洛島東北部構造為潛移斷層,其地表變形形態為帶左移分量的走向滑移逆斷層。而在民都洛島西北部構造之LOS速度落差約為10 mm/yr,也展現了潛移斷層的形態,並和前人研究推斷之可能斷層位置有高度一致性。透過大地資料分析民都洛島之地表變形,本研究觀測到民都洛島現今受到馬尼拉隱沒帶及板塊碰撞的影響,使得塊體產生旋轉,並造成島上一系列的活動斷層,成為此交互作用下由隱沒至走向滑移斷層系統之轉換帶。
英文摘要 Mindoro Island, a transition zone from subduction along the Manila trench to the strike-slip fault system at the present, has been proposed to be the product of ancient arc-continent collision between the Palawan Microcontinental Block and the Philippine Mobile Belt. Abundant earthquakes are clustered in the northern Mindoro belonging to the Manila subduction system while seldom earthquakes are discovered in central and southern island. However, the mechanism of transition from subduction to strike-slip fault system in Mindoro Island is still unclear. In order to comprehend the characteristics of crustal deformation in the island, 8 continuous GPS stations from 2010 to 2015 are adopted in this area. In this study, I used the Bernese software v.5.0 to process the GPS data under ITRF2014. The GPS observations show an apparent collision-induced counterclockwise rotation (10.5°/Myr) of the island and a major velocity difference (25 mm/yr) between the northern and southern island. From the strain rate estimation based on sparse distribution of GPS network, the northern island was mainly characterized by a WNW-ESE extension at a rate of about 180 nstrain/yr, which indicates the activities of structures. Therefore, to increase the spatial resolution of surface deformation, multitrack ALOS-1/PALSAR images from 2007 to 2011 Ire adopted for PSInSAR in Mindoro. The SAR images Ire processed by StaMPS to generate line of sight (LOS) velocity fields, and by the TRAIN software for atmospheric correction based on ERA Weather data. To figure out the characteristics of surface deformation, the LOS velocities Ire decomposed into horizontal (quasi-E) and vertical components based on multitrack combined data sets. The PSInSAR results indicate three active structures in the island while some of them Ire not detected in previous research. The major one (10 mm/yr) is generally along the NNW-SSE trend of the central mountain range from the central to the southern island. The upward movement in the left side of the structure, detected by the PS LOS velocity field, may result from the convergence between the parallel fault systems in the SW island. In the NE island, the inferred fault shows creeping behavior with left-lateral strike-slip and thrust type. In the NW island, the active structure also shows the pattern of creeping, which confirmed the existence of inferred faults proposed by previous research in this area. The island rotation and active structures I found confirm the present-day interactive activities between subduction and plate boundary collision in Mindoro Island.
論文目次 摘要 I
ABSTRACT II
ACKNOWLEDGMENTS III
CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII
1. INTRODUCTION 1
2. GEOLOGICAL BACKGROUND 5
2.1 REVIEW OF GENERAL GEOLOGY IN MINDORO ISLAND 5
2.2 SEISMOTECTONICS 7
2.3 BLOCK ROTATION 12
3. GPS OBSERVATIONS 16
3.1 GPS DATA COLLECTION AND PROCESSING 16
3.2 VELOCITY CALCULATION 18
3.3 GPS VELOCITY FIELDS 21
3.3.1 Horizontal velocity field 21
3.3.2 Vertical velocity field 23
3.4 STRAIN RATE ESTIMATION 24
3.4.1 Strain rate field 25
3.4.2 Rotation rate field 25
4. PERSISTENT SCATTERER INSAR (PSINSAR) 28
4.1 PSINSAR (COMBINE WITH INSAR) 28
4.2 ALOS-1/PALSAR IMAGES COLLECTION 30
4.3 IMAGE PROCESSING (STAMPS) 36
4.3.1 Pre-processing (Create SLCs) 36
4.3.2 Create interferograms (DInSAR) 36
4.3.3 PS processing 37
4.4 ATMOSPHERIC CORRECTION (TRAIN) 40
4.5 PS LOS VELOCITY FIELDS 43
4.5.1 Ascending track (track 449 and track 450) 43
4.5.2 Descending track (track 84) 55
4.6 COMPARISON BETWEEN GPS AND PSINSAR 58
4.6.1 Ascending track 59
4.6.2 Descending track 62
5. TECTONIC IMPLICATIONS FROM GEODETIC DATA 64
5.1 ASCENDING PS LOS VELOCITY PROFILE ANALYSIS 64
5.2 LOS VELOCITY DECOMPOSITION 70
5.3 TECTONIC IMPLICATIONS 75
6. CONCLUSIONS 82
7. REFERENCES 83

參考文獻 Barrier, E., P. Huchon, and M. Aurelio (1991), Philippine fault: A key for Philippine kinematics, Geology, 19, 32–35.
Bekaert D., A. Hooper, and T. J. Wright (2015), A spatially-variable power-law tropospheric correction technique for InSAR data, Journal of Geophysical Research, VOL. 120, Issue 2, P.1345-1356.
Chang, C. P., K. S. Chen, C. T. Wang, J. Y. Yen, T. Y. Chang, and C. W. Lin (2004), Application of space-borne radar interferometry on crustal deformation in Taiwan: a perspective from the natural of events, Terr. Atmos. Ocean. Sci., 15(3), 523-543
Chang, C.P., J. Y. Yen, A. Hooper, F. M. Chou, Y. A. Chen, C. S. Hou, W. C. Hung, and M. S. Lin (2010), Monitoring of Surface Deformation in Northern Taiwan Using DInSAR and PSInSAR Techniques, Terrestrial, Atmospheric and Oceanic Sciences, 21(3), 447-461.
Chen C. W., and H. A. Zebker (2000), Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms, Journal of the Optical Society of America A, Vol. 17, P. 401-414.
Chen, P. F., E. A. Olavere, C.W. Wang, B. C. Bautista, R. U. Solidum Jr., and W. T. Liang (2015), Seismotectonics of Mindoro, Philippines, Tectonophysics, 640–641, 70–79.
Ching, K. E., R. J. Rau, J. C. Lee, and J. C. Hu (2007), Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005, Earth and Planetary Science Letters, 262, 601–619.
Dach, R., U. Hugentoblor, P. Fridez, and M. Meindl (2007), Bernese GPS Software Version 5.0, Astronomical Institute, University of Berne, 612 pp.
De Boer, J., L. A. Odom, P. C. Ragland, F. G. Snider, and N. R. Tilford (1980), The Bataan Orogene: eastward subduction, tectonic rotations, and volcanism in the western Pacific (Philippines), Tectonophysics, VOL. 67, Issues 3-4, P.251–282.
Dunn, J. R, M. D Fuller, R. McCabe, and I. Williams (1979), Preliminary paleomagneticresults from the Philippines, Marianas, Carolines, and Solomons, American Geophysical Union Transactions, v. 60, p. 239.
Ferretti, A., C. Prati, and F. Rocca (2000), Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, Geoscience and Remote Sensing, IEEE Trans. Geosci. Remote Sens, 38(5), 2202-2212.
Fuller, M. D., I. Williams, R. McCabe, J. Almasco, R. Encina, and J. Wolfe (1982), Paleomagnetism of Luzon, The tectonic and geologic evolution of Southeast Asian seas and islands: Part 2: 79-94.
Hamilton, D. (1979), Tectonics of the Indonesian region, U.S. Geol. Surv. Prof. Pap., 1078: 345 pp.
Hashimoto, W., and T. Sato (1968). Contribution to the geology of Mindoro and neighboring islands of the Philippines, In: Kobayashi, T., Toriyama, R., Hashimoto, W. (Eds), Geology and Paleontology of Southeast Asia, vol. 5, pp. 192–210.
Hooper, A. (2008), A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophysical Research Letters, 35(16)10.1029/2008gl034654.
Hooper, A., and H. A. Zebker (2007), Phase unwrapping in three dimensions with application to InSAR time series, JOSA A 24.9 (2007): 2737-2747.
Hooper, A., P. Segall, K. Johnson, and J. Rubinstein (2002), Reconciling seismic and geodetic models of the 1989 Kilauea south flank earthquake, Geophysical research letters 29.22.
Hooper, A., H. Zebker, P. Segall, and B. Kampes (2004), A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophysical research letters 31.23.
Imamura, F., C. E. Synolaakis, E. Gica, V. Trrov, E. Listanco, and J. Lee (1995), Field Survey of the 1994 Mindoro Island, Philippines Tsunami, PAGEOPH, Vol. 144, Nos. 3/4.
Jumawan, F. T., G. P. Yumul Jr., and M. V. Manjoorsa (1994), Geology and petrography of a part of the Amnay Ophiolite, Occidental Mindoro, Philippines, Geological Society of the Philippines GEOCON’93 Proceedings, 133–46.
Jumawan, F. T., G. P. Yumul Jr., and R. A. Tamayo Jr. (1998), Using geochemistry as a tool in determining the tectonic setting and mineralization potential of an exposed upper mantle-crust sequence: example from the Amnay ophiolitic complex in occidental Mindoro, Philippines, Journal of the Geological Society of the Philippines 53, 24-48.
Karig, D. E., D.R. Sarewitz, and G. D. Haeck (1986), Role of strike-slip faulting in the evolution of allocthonous terranes in the Philippines, Geology 14, 852–855.
Knittel, U., and U. Daniels (1987), Sr-isotopic composition of marbles from the Puerto Galera area (Mindoro, Philippines): additional evidence for a Paleozoic age of a metamorphic complex in the island arc, Geology 15, 136–138.
Madsen, S. N., H. Zebker, and J. Martin (1993), Topographic mapping using radar interferometry: Processing techniques, Geoscience and Remote Sensing, IEEE Transactions on, 31(1), 246-256.
Marchadier, Y., and C. Rangin (1990), Polyphase tectonics at the southern tip of the Manila trench, Mindoro-Tables Island, Philippines, Tectonophysics, 183, P.273-287.
McCabe, R., M. D Fuller, I. Williams, and J. Wolfe (1980), Paleomagnetism of Baguio region of northern Luzon, American Geophysical Union Transactions, v. 62, p. 236.
McCabe, R. (1984), Implications of paleomagnetic data on the collision related bending of island arcs, Tectonics, 3(4), 409–428, doi:10.1029/TC003i004p00409.
McCabe, R., J. Almasco, and W. Diegor (1982), Geologic and paleomagnetic evidence for a possible Miocene collision in western Panay, central Philippines, Geology, 10, 325–329, doi:10.1130/0091-7613(1982)10<325:GAPEFA>2.0.CO;2.
McCabe, R., J. Almasco, and G. Yumul (1985), Terranes of Central Philippines. In: HoIll, D.G. (Ed.), Tectonostratigraphic Terranes of Circum-Pacific Region, Circum-Pacific Energy and Mineral Resources Earth Science Series, vol. 1, pp. 421–436.
Miller, M. M., and M. Shirzaei (2015), Spatiotemporal characterization of land subsidence and uplift in Phoenix using InSAR time series and wavelet transforms, J. Geophys. Res. Solid Earth, 120, 5822–5842, doi:10.1002/2015JB012017.
Milsom, J., J. R. Ali, and K. L. Queaño (2006), Peculiar geometry of northern Luzon, Philippines: implications for regional tectonics of new gravity and paleomagnetic data, Tectonics 25, 1–14.
Rangin, C., J. F. Stephan, and C. Muller (1985), Middle Oligocene oceanic crust of the South China Sea jammed into Mindoro collision zone, Philippines. Geology 13, 425–428.
Rosen, P. A., S. Hensley, G. Peltzer, and M. Simons (2004), Updated repeat orbit interferometry package released, Eos, Vol.85, P. 47.
Shen, Z.K., D. D. Jackson, and B. X. Ge (1996), Crustal deformation across and beyond the Los Angeles basin from geodetic measurements, J. Geophys. Res. 101, 27957–27980.
Sousa, J. (2009), Potential of Integrating PSI Methodologies in the Detection of Surface Deformation, Thesis (Ph.D), University of Porto.
Suppe, J. (1988), Tectonics of arc-continent collision on both sides of the South China Sea; Taiwan and Mindoro, Acta Geologica Taiwanica 26, 1–18.
Wallace, L. M., S. Ellis, and P. Mann (2009), Collisional model for rapid fore-arc block rotations, arc curvature, and episodic back-arc rifting in subduction settings, Geochem, Geophys. Geosyst., 10, Q05001, doi:10.1029/2008GC002220.
Wallace, L. M., P. Barnes, J. Beavan, R. Van Dissen, N. Litchfield, J. Mountjoy, R. Langridge, G. Lamarche, and N. Pondard (2012), The kinematics of a transition from subduction to strike-slip: An example from the central New Zealand plateboundary, J. Geophys. Res., 117, B02405, doi:10.1029/2011JB008640.
Ward, S. N. (1994), A multidisciplinary approach to seismic hazard in southern California, Bull. Seism. Soc. Am. 84, 1293–1309.
Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich (1997), Southern California permanent GPS geodetic array: spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. Geophys. Res. 102, 18057–18070.
Yu, S.B., L.C. Kuo, R.S. Punongbayan, and E.G. Ramos (1999), GPS observation of crustal deformation in the Taiwan–Luzon region, Geophysical Research Letters 26, 923–926.
Yumul, G. P., C. B. Dimalanta, R. A. Tamayo, and R. C. Maury (2003), Collision, subduction and accretion events in the Philippines: a synthesis. Island Arc 12 (2), 77–91.
Yumul Jr., G. P., C. B. Dimalanta, E. J. Marquez, and K. L. Queaño (2009), Onland signatures of the Palawan microcontinental block and Philippine mobile belt collision and crustal growth process: a review, J. Asian Earth Sci. 34 (5), 610–623.
謝亞璇 (2015),利用PSInSAR與GPS探討位於萊特島菲律賓斷層潛移至鎖定過度帶之運動特性,國立成功大學測量及空間資訊研究所碩士論文,共108頁。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw