進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508201621490800
論文名稱(中文) 嬰兒整體動作發展與發展遲緩高危險因子的相關性
論文名稱(英文) Correlation between General Movements and Risk Factors in Infants with High Risk for Developmental Delay
校院名稱 成功大學
系所名稱(中) 物理治療學系
系所名稱(英) Department of Physical Therapy
學年度 104
學期 2
出版年 105
研究生(中文) 柯雅菁
研究生(英文) Ya-Ching Ko
學號 T66011016
學位類別 碩士
語文別 英文
論文頁數 61頁
口試委員 指導教授-徐碧真
口試委員-王慧儀
口試委員-林永傑
中文關鍵字 整體動作評估  胎兒小於妊娠年齡  腦部超音波  極低體重  慢性肺部疾病  嬰兒 
英文關鍵字 General movement  small for gestational age  brain ultrasound  very low birth weight  chronic lung disease  infants 
學科別分類
中文摘要 背景和目的:由於醫療進步,許多在加護病房的新生兒得以存活,然而這些嬰兒常有發展遲緩高危險因子,如胎兒小於妊娠年齡、非常低體重、腦部超音波異常或慢性肺部疾病。整體動作(General movements)被主張可以反應出嬰兒腦部的功能性,因此,本研究主要檢測有上述四種發展遲緩高危險因子嬰兒的整體動作表現,並探討發展遲緩高危險因子與整體動作間的相關性。
方法:本研究於成功大學附設醫院共招募了21位足月產的新生兒(控制組),25沒有發展遲緩高危險因子的早產兒(早產控制組)及46位有發展遲緩高危險的新生兒(高危險組),高危險群包含胎兒小於妊娠年齡、非常低體重、腦部超音波異常及慢性肺部疾病等四個次族群。本研究分別在三個時期,早產(preterm)、扭動運動(writhing)和不安扭動(fidgety)時期,拍攝各46、81及60個整體動作影片。由三位物理治療師評估,受試者整體動作為正常或異常。而異常的腦部超音波則分成輕微 (包含輕微及原本腦部超音波異常後續為正常者)及較嚴重的(包含中等及嚴重的腦部超音波異常)次組別,進行以下統計分析。第一,使用費雪精準檢定(Fisher’s exact test)分析各發展遲緩高危險因子或多個高危險次族群與整體動作間的相關性,並使用克雷莫V係數(Cramver’s V coefficient)分析正常、輕微及較嚴重的腦部超音波及整體動作間的相關性;第二,使用二元羅吉斯迴歸(Binary logistic regression)檢測及比較各高危險發展因子可能造成異常整體動作的風險。
結果和討論:胎兒小於妊娠年齡和整體動作無關,但胎兒小於妊娠年齡在早產時期異常整體動作的比例較高,胎兒小於妊娠年齡的嬰兒在產前,可能原因是腦部保護效應(Brain sparing)可以讓胎兒血液重新分配到腦部,在產後則重獲充足的營養,可能導致早期有較多異常整體動作。腦部超音波異常和異常整體動作在三個時期皆有顯著的相關,進一步檢測時,發現輕微的腦部超音波異常和早期異常的整體動作有相關,而較嚴重的腦部超音波異常和不安扭動時期的整體動作有相關,且越嚴重的腦部超音波異常和異常整體動作有關,推測早期的異常整體動作和輕微的腦部超音波異常可能是暫時腦部功能障礙;而嚴重的腦部超音波異常和異常不安扭動整體動作則可能和較永久的腦部功能障礙有關,但尚須研究證實。非常低體重和異常的整體動作在早產及扭動運動有關,每個非常低體重受試者同時有腦部超音波異常。高危險組中,只有六個受試者有慢性肺部疾病,且同時有非常低體重及腦部超音波異常,慢性肺部疾病和整體動作無關,但在早產和扭動運動時期異常整體動作的比例較高。羅吉斯迴歸也指出在這些發展遲緩高危險因子中,只有腦部超音波異常顯著影響每個時期的整體動作,輕微的腦部超音波異常較容易導致早產時期的整體動作異常;而較嚴重的腦部超音波異常較容易導致異常不安扭動整體動作,且風險為正常腦部超音波的20倍。比較包含兩個或三個高危險次族群與整體動作間的相關性時,若包含胎兒小於妊娠年齡這個次族群時,和整體動作異常在早期皆有顯著相關,但在不安扭動時期則無關;若沒有包含胎兒小於妊娠年齡這個次族群時,則和異常整體動作在三個時期皆有顯著的相關。
結論:本研究發現在各時期腦部超音波異常整體動作異常相關,且不同嚴重程度的腦部超音波異常會影響不同時期的整體動作,極低出生體重和異常的整體動作在早產及扭動運動有關,胎兒小於妊娠年齡和慢性肺部疾病和整體動作無關,但在早期異常整體動作的比例都較高。雖然高危險群包含46位個案,但並非全部都能參與三個時期的整體動作評估,所以可用資料較少,特別是慢性肺部疾病個案數較少、且具非常低體重及腦部超音波異常等問題,未來應增加各次族群個案數,除了探討和整體動作的相關性,亦應長期追蹤,了解各發展遲緩高危險因子的長期影響。
英文摘要 Background and Purpose: Small for gestational age (SGA), abnormal brain ultrasound (AbUS), very low birth weight (VLBW), or chronic lung disease (CLD) are considered as high risk factors of developmental delay. General movements (GMs) are claimed to be endogenous and the qualities of GMs may reflect the maturation and status of an infant’s nervous system. The purpose of this study was to examine the relationships between GMs and above four high risk factors.
Methods: Twenty-one term infants (control group), 25 preterm infants without other high risk factors (premature group), and 46 infants with at least one of following conditions, High risk group (HRG) had four subgroups including SGA, AbUS, VLBW or CLD. Forty-six, 81 and 60 recordings were collected and rated in preterm, writhing and fidgety periods, respectively. GMs were categorized as normal or abnormal. AbUS were divided into two subdivisions, minor AbUS including mild AbUS or initially AbUS but followed normal ultrasound findings and severe AbUS including moderate or severe AbUS. The relationships between SGA, AbUS, VLBW, CLD or multiple risk factors and GMs were determined by Fisher’s exact test; Cramer’s V test was used to examine the relationships between GMs and non-, minor and severe AbUS. Binary logistic regression was applied to determine the contribution of each risk factor to probability of abnormal GMs.
Results and Discussion: SGA was not related to abnormal GMs, but SGA had high percentage of abnormal GMs in the preterm period. “Brain sparing” which may prevent severe brain injury in uterus, and restored supplies of nutrition after birth may be another possible reason that contribute to high incident of early abnormal GMs in SGA. AbUS was related to abnormal GMs in each period. In further examinations, minor AbUS was related to abnormal GMs in the preterm and writhing periods, while severe AbSU was related to abnormal GMs in the fidgety period. The increased severity of AbUS was correlated to abnormal GMs in each period. The possible reasons may be that early abnormal GMs and minor AbUS were attribute to transient brain dysfunction while severe AbUS and abnormal fidgety GMs may attribute to permanent brain dysfunction; however, further study is needed to confirm this speculation. VLBW was related to abnormal GMs in the preterm and writhing periods. Ten participants with VLBW all had AbUS. CLD was not related to abnormal GMs, but incidents of abnormal GMs were high in the preterm and writhing periods. Only 6 participants with CLD and they all had AbUS and VLBW. Logistic regression indicated that among these risk factors, only AbUS had significantly effect on GMs in each period. Minor AbUS was at higher risk for abnormal GMs in the preterm period, while severe AbUS had 20 times of risk for abnormal GMs in the fidgety period in comparison with non-AbUS. When examining the correlation between multiple risk factors (including two or three risk factors) and GMs, multiple risk factors including SGA were related to abnormal GMs in the preterm and writhing periods, while multiple risk factors including risk factors other than SGA were related to abnormal GMs in each period.
Conclusions: This study revealed that AbUS were consistently related to abnormal GMs, while VLBW were related to abnormal GMs in the preterm or writhing periods. SGA and CLD did not related to abnormal GMs. Increased severity of AbSU was related to GMs in each period. Although HRG including 46 participants, the GMs recordings of every participant was not available for examination in the three periods. Particularly, few participants had CLD, and all of them had VLBW and AbUS. Further study is needed to examine the long-term effect of each high risk factor on neurodevelopment by enlarging the sample size in each risk factor and following up the participants.
論文目次 Chapter I Background Information 1
1.1 Introduction 1
1.2 Purposes 5
1.3 Definitions 6
1.4 Operational definitions 6
1.5 Limitations 7
1.6 Assumptions 8
1.7 Hypotheses 8
1.8 Research questions: 8
1.9 Rationales for the hypotheses 8
1.9.1 Rationale for the first hypothesis 8
1.9.2 Rationale for the second hypothesis 9
1.9.3 Rationale for the third hypothesis 11
1.9.4 Rationale for the fourth hypothesis 12
1.10 Significance of Research Questions 12
1.10.1 Significance of the first research question 12
1.10.2 Significance of the second research question 13
1.11 Needs for Study 13
Chapter II Literature review 15
2.1 Assessment of GMs 15
2.2 High risk factors 17
2.2.1 SGA 17
2.2.2 AbUS 19
2.2.3 VLBW 20
2.2.4 CLD 21
2.3 Common abnormal neurological outcome 23
2.4 Neural Mechanism and Theories of GMs 24
Chapter III Methods 27
3.1 Participants 27
3.2 Procedure 27
3.2.1 Data collection 27
3.2.2 Qualitative assessment of general movement 29
3.3 Statistical analysis 29
Chapter IV Results 31
4.1 The relationships between GMs and high risk factors 33
4.1.1 The relationships between SGA and GMs 33
4.1.2 The relationships between AbUS and GMs 34
4.1.3 The relationships between VLBW and GMs 36
4.1.4 The relationships between CLD and GMs 37
4.2 Contribution of each risk factor to probability of abnormal GMs 37
4.3 The relationship between GMs and multiple risk factors 38
Chapter V Discussion 40
5.1 The relationships between SGA and GMs 40
5.2 The relationships between AbUS and GMs 42
5.2.1 The relationships between AbUS and GMs in different periods 43
5.2.2 The relationship between severities of AbUS and GMs 44
5.2.3 The relationship between transient AbUS and GMs 45
5.3 The relationships between VLBW and GMs 45
5.4 The relationships between CLD and GMs 47
5.5 Contribution of each risk factor to probability of abnormal GMs 48
5.6 The relationship between GMs and multiple risk factors 49
Chapter VI Conclusion 50
References 52
參考文獻 1. de Kleine MJ, den Ouden AL, Kollee LA, et al. Outcome of perinatal care for very preterm infants at 5 years of age: a comparison between 1983 and 1993. Paediatr Perinat Epidemiol. Jan 2007;21(1):26-33.
2. MacDorman MF. Race and ethnic disparities in fetal mortality, preterm birth, and infant mortality in the United States: an overview. Semin Perinatol. Aug 2011;35(4):200-208.
3. Gabriel M, Pallás Alonso C, De La Cruz Bértolo J, et al. Age of sitting unsupported and independent walking in very low birth weight preterm infants with normal motor development at 2 years. Acta Paediatr. 2009;98(11):1815-1821.
4. Lacey J. Very low-birthweight preterm infants walk later than term infants, but most are walking by 18 months. Aust J Physiother. 2001;47(1):65.
5. Blair E. Trends in cerebral palsy. Indian J Pediatr. 2001;68(5):433-438.
6. O'Shea TM, Preisser JS, Klinepeter KL, Dillard RG. Trends in mortality and cerebral palsy in a geographically based cohort of very low birth weight neonates born between 1982 to 1994. Pediatrics. 1998;101(4):642-647.
7. Winter S, Autry A, Boyle C, Yeargin-Allsopp M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics. Dec 2002;110(6):1220-1225.
8. Fattal-Valevski A, Leitner Y, Kutai M, et al. Neurodevelopmental outcome in children with intrauterine growth retardation: a 3-year follow-up. J. Child Neurol. 1999;14(11):724-727.
9. Strauss RS. Adult functional outcome of those born small for gestational age: twenty-six–year follow-up of the 1970 British birth cohort. Jama. 2000;283(5):625-632.
10. Mwaniki MK, Atieno M, Lawn JE, Newton CR. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet. Feb 4 2012;379(9814):445-452.
11. Anderson PJ, Doyle LW. Neurodevelopmental outcome of bronchopulmonary dysplasia. Semin Perinatol. Aug 2006;30(4):227-232.
12. Short EJ, Klein NK, Lewis BA, et al. Cognitive and academic consequences of bronchopulmonary dysplasia and very low birth weight: 8-year-old outcomes. Pediatrics. Nov 2003;112(5):e359.
13. Lewis BA, Singer LT, Fulton S, et al. Speech and language outcomes of children with bronchopulmonary dysplasia. J. Commun. Disord. Sep-Oct 2002;35(5):393-406.
14. Bolisetty S, Dhawan A, Abdel-Latif M, Bajuk B, Stack J, Lui K. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics. Jan 2014;133(1):55-62.
15. Klebermass-Schrehof K, Czaba C, Olischar M, et al. Impact of low-grade intraventricular hemorrhage on long-term neurodevelopmental outcome in preterm infants. Childs Nerv. Syst. Dec 2012;28(12):2085-2092.
16. van Wezel-Meijler G, Steggerda SJ, Leijser LM. Cranial ultrasonography in neonates: role and limitations. Semin Perinatol. Feb 2010;34(1):28-38.
17. Einspieler C, Prechtl HF. Prechtl's assessment of general movements: a diagnostic tool for the functional assessment of the young nervous system. Ment Retard Dev Disabil Res Rev. 2005;11(1):61-67.
18. Hadders-Algra M. Putative neural substrate of normal and abnormal general movements. Neurosci. Biobehav. Rev. 2007;31(8):1181-1190.
19. Prechtl HF, Hopkins B. Developmental transformations of spontaneous movements in early infancy. Early Hum Dev. Dec 1986;14(3-4):233-238.
20. Cioni G, Prechtl HF. Preterm and early postterm motor behaviour in low-risk premature infants. Early Hum Dev. Sep 1990;23(3):159-191.
21. Prechtl HF, Einspieler C, Cioni G, Bos AF, Ferrari F, Sontheimer D. An early marker for neurological deficits after perinatal brain lesions. The Lancet. 1997;349(9062):1361-1363.
22. Zahed-Cheikh M, Brévaut-Malaty V, Busuttil M, Monnier A-S, Roussel M, Gire C. Comparative analysis of perinatal and postnatal factors, and general movement in extremely preterm infants. Brain Dev. 2011;33(8):656-665.
23. Garcia JM, Gherpelli JLD, Leone CR. The role of spontaneous general movement assessment in the neurological outcome of cerebral lesions in preterm infants. J. Pediatr. (Rio J.). 2004;80(4):296-304.
24. Burger M, Louw QA. The predictive validity of general movements–a systematic review. Eur. J. Paediatr. Neurol. 2009;13(5):408-420.
25. Beccaria E, Martino M, Briatore E, et al. Poor repertoire General Movements predict some aspects of development outcome at 2 years in very preterm infants. Early Hum Dev. Jun 2012;88(6):393-396.
26. Nakajima Y, Einspieler C, Marschik PB, Bos AF, Prechtl HF. Does a detailed assessment of poor repertoire general movements help to identify those infants who will develop normally? Early human development. Jan 2006;82(1):53-59.
27. Groen SE, de Blecourt AC, Postema K, Hadders-Algra M. General movements in early infancy predict neuromotor development at 9 to 12 years of age. Dev Med Child Neurol. Nov 2005;47(11):731-738.
28. Ferrari F, Cioni G, Einspieler C, et al. Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Arch. Pediatr. Adolesc. Med. May 2002;156(5):460-467.
29. Adde L, Rygg M, Lossius K, Oberg GK, Stoen R. General movement assessment: predicting cerebral palsy in clinical practise. Early Hum Dev. Jan 2007;83(1):13-18.
30. Vaal J, van Soest AJ, Hopkins B, Sie LT, van der Knaap MS. Development of spontaneous leg movements in infants with and without periventricular leukomalacia. Exp. Brain Res. Nov 2000;135(1):94-105.
31. Spittle AJ, Brown NC, Doyle LW, et al. Quality of general movements is related to white matter pathology in very preterm infants. Pediatrics. May 2008;121(5):e1184-1189.
32. Bos AF, Martijn A, Okken A, Prechtl HF. Quality of general movements in preterm infants with transient periventricular echodensities. Acta paediatrica (Oslo, Norway : 1992). Mar 1998;87(3):328-335.
33. Bekedam D, Visser G, De Vries J, Prechtl H. Motor behaviour in the growth retarded fetus. Early Hum Dev. 1985;12(2):155-165.
34. Sival DA, Visser GH, Prechtl HF. The effect of intrauterine growth retardation on the quality of general movements in the human fetus. Early Hum Dev. Feb 1992;28(2):119-132.
35. Geerdink JJ, Hopkins B. Effects of birthweight status and gestational age on the quality of general movements in preterm newborns. Biol. Neonate. 1993;63(4):215-224.
36. Zuk L, Harel S, Leitner Y, Fattal-Valevski A. Neonatal general movements: an early predictor for neurodevelopmental outcome in infants with intrauterine growth retardation. J. Child Neurol. Jan 2004;19(1):14-18.
37. Zuk L, Harel S, Leitner Y, Jaffa A, Fattal-Valevski A. Upper limb movements and outcome in intrauterine-growth-retarded infants at 2 years. Brain Dev. Nov 2008;30(10):636-642.
38. Bos AF, van Loon AJ, Hadders-Algra M, Martijn A, Okken A, Prechtl HF. Spontaneous motility in preterm, small-for-gestational age infants. II. Qualitative aspects. Early Hum Dev. Nov 24 1997;50(1):131-147.
39. Bos AF, van Asperen RM, de Leeuw DM, Prechtl HF. The influence of septicaemia on spontaneous motility in preterm infants. Early Hum Dev. 1997;50(1):61-70.
40. Bos AF, Martijn A, van Asperen RM, Hadders-Algra M, Okken A, Prechtl HF. Qualitative assessment of general movements in high-risk preterm infants with chronic lung disease requiring dexamethasone therapy. J Pediatr. Feb 1998;132(2):300-306.
41. Bos AF, Dibiasi J, Tiessen AH, Bergman KA. Treating preterm infants at risk for chronic lung disease with dexamethasone leads to an impaired quality of general movements. Neonatology. 2002;82(3):155-158.
42. Hsieh WS, Wu HC, Jeng SF, et al. Nationwide singleton birth weight percentiles by gestational age in Taiwan, 1998-2002. Acta Paediatr Taiwan. Jan-Feb 2006;47(1):25-33.
43. KOHL S. Epidemiology of preterm delivery. Clin. Obstet. Gynecol. 1980;23(1):17-31.
44. Brodsky D, Christou H. Current concepts in intrauterine growth restriction. J. Intensive Care Med. Nov-Dec 2004;19(6):307-319.
45. Morgane PJ, Austin-LaFrance R, Bronzino J, et al. Prenatal malnutrition and development of the brain. Neurosci. Biobehav. Rev. 1993;17(1):91-128.
46. Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am. J. Clin. Nutr. Feb 2007;85(2):614s-620s.
47. Rees S, Mallard C, Breen S, Stringer M, Cock M, Harding R. Fetal brain injury following prolonged hypoxemia and placental insufficiency: a review. Comp. Biochem. Physiol. A Mol. Integr. Physiol. Mar 1998;119(3):653-660.
48. Sanz-Cortes M, Figueras F, Bargallo N, Padilla N, Amat-Roldan I, Gratacos E. Abnormal brain microstructure and metabolism in small-for-gestational-age term fetuses with normal umbilical artery Doppler. Ultrasound Obstet. Gynecol. Aug 2010;36(2):159-165.
49. Tolsa CB, Zimine S, Warfield SK, et al. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatric research. Jul 2004;56(1):132-138.
50. Figueras F, Oros D, Cruz-Martinez R, et al. Neurobehavior in term, small-for-gestational age infants with normal placental function. Pediatrics. Nov 2009;124(5):e934-941.
51. Hadders-Algra M. The neuronal group selection theory: a framework to explain variation in normal motor development. Dev Med Child Neurol. Aug 2000;42(8):566-572.
52. Visser GH, Laurini RN, de Vries JI, Bekedam DJ, Prechtl HF. Abnormal motor behaviour in anencephalic fetuses. Early Hum Dev. Nov 1985;12(2):173-182.
53. Kanold PO, Luhmann HJ. The subplate and early cortical circuits. Annu. Rev. Neurosci. 2010;33:23-48.
54. Kostovic I, Judas M, Rados M, Hrabac P. Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb. Cortex. May 2002;12(5):536-544.
55. Leijser LM, Srinivasan L, Rutherford MA, et al. Frequently encountered cranial ultrasound features in the white matter of preterm infants: correlation with MRI. Eur. J. Paediatr. Neurol. Jul 2009;13(4):317-326.
56. Futagi Y, Toribe Y, Ogawa K, Suzuki Y. Neurodevelopmental outcome in children with intraventricular hemorrhage. Pediatr Neurol. Mar 2006;34(3):219-224.
57. Pidcock FS, Graziani LJ, Stanley C, Mitchell DG, Merton D. Neurosonographic features of periventricular echodensities associated with cerebral palsy in preterm infants. J Pediatr. Mar 1990;116(3):417-422.
58. Appleton RE, Lee RE, Hey EN. Neurodevelopmental outcome of transient neonatal intracerebral echodensities. Arch Dis Child. Jan 1990;65(1 Spec No):27-29.
59. Lai FF, Tsou KY. Transient periventricular echodensities and developmental outcome in preterm infants. Pediatr. Neurol. 1999;21(5):797-801.
60. Resch B, Jammernegg A, Perl E, Riccabona M, Maurer U, Muller WD. Correlation of grading and duration of periventricular echodensities with neurodevelopmental outcome in preterm infants. Pediatr. Radiol. Aug 2006;36(8):810-815.
61. Hamilton BE, Hoyert DL, Martin JA, Strobino DM, Guyer B. Annual summary of vital statistics: 2010-2011. Pediatrics. Mar 2013;131(3):548-558.
62. Health Promotion Administration MoHaW. https://olap.hpa.gov.tw/search/ShowReport.aspx?mode=7&tarId=105&year=103&com_year=100,101,102&ftype=&fvals=&fpage=0&CityWhere=&CityName=&chart=0&addType=&NoLevel=1 2016, May 21.
63. Stoll BJ, Hansen N. Infections in VLBW infants: studies from the NICHD Neonatal Research Network. Semin Perinatol. Aug 2003;27(4):293-301.
64. Fanaroff AA, Stoll BJ, Wright LL, et al. Trends in neonatal morbidity and mortality for very low birthweight infants. Am J Obstet Gynecol. Feb 2007;196(2):147.e141-148.
65. Paneth N, Rudelli R, Monte W, et al. White matter necrosis in very low birth weight infants: neuropathologic and ultrasonographic findings in infants surviving six days or longer. J Pediatr. Jun 1990;116(6):975-984.
66. Inder TE, Wells SJ, Mogridge NB, Spencer C, Volpe JJ. Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr. Aug 2003;143(2):171-179.
67. Anjari M, Srinivasan L, Allsop JM, et al. Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage. Apr 15 2007;35(3):1021-1027.
68. Eikenes L, Lohaugen GC, Brubakk AM, Skranes J, Haberg AK. Young adults born preterm with very low birth weight demonstrate widespread white matter alterations on brain DTI. Neuroimage. Feb 1 2011;54(3):1774-1785.
69. Abernethy LJ, Palaniappan M, Cooke RW. Quantitative magnetic resonance imaging of the brain in survivors of very low birth weight. Arch Dis Child. Oct 2002;87(4):279-283.
70. Fearon P, O'Connell P, Frangou S, et al. Brain volumes in adult survivors of very low birth weight: a sibling-controlled study. Pediatrics. Aug 2004;114(2):367-371.
71. Speer CP. Inflammation and bronchopulmonary dysplasia. Paper presented at: Seminars in neonatology2003.
72. Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med. Nov 8 2007;357(19):1946-1955.
73. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. Jul 2004;59(7):574-580.
74. Garg M, Kurzner SI, Bautista DB, Keens TG. Clinically unsuspected hypoxia during sleep and feeding in infants with bronchopulmonary dysplasia. Pediatrics. May 1988;81(5):635-642.
75. Singer L, Martin RJ, Hawkins SW, Benson-Szekely LJ, Yamashita TS, Carlo WA. Oxygen desaturation complicates feeding in infants with bronchopulmonary dysplasia after discharge. Pediatrics. Sep 1992;90(3):380-384.
76. Coalson JJ. Pathology of bronchopulmonary dysplasia. Paper presented at: Seminars in perinatology2006.
77. Gagliardi L, Bellu R, Zanini R, Dammann O. Bronchopulmonary dysplasia and brain white matter damage in the preterm infant: a complex relationship. Paediatr Perinat Epidemiol. Nov 2009;23(6):582-590.
78. Katz-Salamon M, Gerner E, Jonsson B, Lagercrantz H. Early motor and mental development in very preterm infants with chronic lung disease. Arch Dis Child Fet Neonat Ed. 2000;83(1):F1-F6.
79. Weisglas-Kuperus N, Baerts W, Fetter WP, Sauer PJ. Neonatal cerebral ultrasound, neonatal neurology and perinatal conditions as predictors of neurodevelopmental outcome in very low birthweight infants. Early Hum Dev. Dec 1992;31(2):131-148.
80. Wilson-Costello D, Borawski E, Friedman H, Redline R, Fanaroff AA, Hack M. Perinatal correlates of cerebral palsy and other neurologic impairment among very low birth weight children. Pediatrics. Aug 1998;102(2 Pt 1):315-322.
81. Einspieler C. Prechtl's method on the qualitative assessment of general movements in preterm, term and young infants. Mac Keith Press London, UK; 2004.
82. Hadders-Algra M, Van Eykern LA, Klip-Van den Nieuwendijk AW, Prechtl HF. Developmental course of general movements in early infancy. II. EMG correlates. Early Hum Dev. Mar-Apr 1992;28(3):231-251.
83. Hadders-Algra M, Mavinkurve-Groothuis AMC, Groen SE, Stremmelaar EF, Martijn A, Butcher PR. Quality of general movements and the development of minor neurological dysfunction at toddler and school age. Clin. Rehabil. 2004;18(3):287-299.
84. Kiechl-Kohlendorfer U, Ralser E, Pupp Peglow U, Reiter G, Trawoger R. Adverse neurodevelopmental outcome in preterm infants: risk factor profiles for different gestational ages. Acta paediatrica (Oslo, Norway : 1992). May 2009;98(5):792-796.
85. Randhawa R, Cohen P. The role of the insulin-like growth factor system in prenatal growth. Mol Genet Metab. Sep-Oct 2005;86(1-2):84-90.
86. Kok JH, den Ouden AL, Verloove-Vanhorick SP, Brand R. Outcome of very preterm small for gestational age infants: the first nine years of life. Br J Obstet Gynaecol. Feb 1998;105(2):162-168.
87. Duan Y, Sun FQ, Li YQ, et al. Prognosis of psychomotor and mental development in premature infants by early cranial ultrasound. Ital J Pediatr. 2015;41:30.
88. Heibel M, Heber R, Bechinger D, Kornhuber HH. Early diagnosis of perinatal cerebral lesions in apparently normal full-term newborns by ultrasound of the brain. Neuroradiology. 1993;35(2):85-91.
89. Graziani LJ, Pasto M, Stanley C, et al. Neonatal neurosonographic correlates of cerebral palsy in preterm infants. Pediatrics. Jul 1986;78(1):88-95.
90. de Vries LS, Dubowitz LM, Dubowitz V, et al. Predictive value of cranial ultrasound in the newborn baby: a reappraisal. Lancet. Jul 20 1985;2(8447):137-140.
91. Hashimoto K, Hasegawa H, Kida Y, Takeuchi Y. Correlation between neuroimaging and neurological outcome in periventricular leukomalacia: diagnostic criteria. Pediatr. Int. Jun 2001;43(3):240-245.
92. McCormick MC, Brooks-Gunn J, Workman-Daniels K, Turner J, Peckham GJ. The health and developmental status of very low-birth-weight children at school age. Jama. Apr 22-29 1992;267(16):2204-2208.
93. Hack M, Flannery DJ, Schluchter M, Cartar L, Borawski E, Klein N. Outcomes in young adulthood for very-low-birth-weight infants. N Engl J Med. Jan 17 2002;346(3):149-157.
94. Husby IM, Skranes J, Olsen A, Brubakk AM, Evensen KA. Motor skills at 23 years of age in young adults born preterm with very low birth weight. Early Hum Dev. Sep 2013;89(9):747-754.
95. Bjuland KJ, Lohaugen GC, Martinussen M, Skranes J. Cortical thickness and cognition in very-low-birth-weight late teenagers. Early Hum Dev. Jun 2013;89(6):371-380.
96. Allen J, Zwerdling R, Ehrenkranz R, et al. Statement on the care of the child with chronic lung disease of infancy and childhood. Am J Respir Crit Care Med. Aug 1 2003;168(3):356-396.
97. Philip AG. Chronic lung disease of prematurity: a short history. Semin Fetal Neonatal Med. Dec 2009;14(6):333-338.
98. Laughon M, O'Shea MT, Allred EN, et al. Chronic lung disease and developmental delay at 2 years of age in children born before 28 weeks' gestation. Pediatrics. Aug 2009;124(2):637-648.
99. Yeo CL, Chan C. Motor development of very low birthweight infants with chronic lung disease - a comparative study. Ann Acad Med Singapore. Aug 2005;34(7):411-416.
100. Bohm B, Katz-Salamon M. Cognitive development at 5.5 years of children with chronic lung disease of prematurity. Arch Dis Child Fetal Neonatal Ed. Mar 2003;88(2):F101-105.
101. MacLennan A. A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. BMJ. Oct 16 1999;319(7216):1054-1059.
102. Mutch L, Alberman E, Hagberg B, Kodama K, Perat MV. Cerebral palsy epidemiology: where are we now and where are we going? Dev Med Child Neurol. Jun 1992;34(6):547-551.
103. Jones MW, Morgan E, Shelton JE, Thorogood C. Cerebral palsy: introduction and diagnosis (part I). Journal of pediatric health care : official publication of National Association of Pediatric Nurse Associates & Practitioners. May-Jun 2007;21(3):146-152.
104. Smithers-Sheedy H, Badawi N, Blair E, et al. What constitutes cerebral palsy in the twenty-first century? Dev Med Child Neurol. Apr 2014;56(4):323-328.
105. Magalhaes LC, Missiuna C, Wong S. Terminology used in research reports of developmental coordination disorder. Dev Med Child Neurol. Nov 2006;48(11):937-941.
106. Hadders-Algra M. Two distinct forms of minor neurological dysfunction: perspectives emerging from a review of data of the Groningen Perinatal Project. Dev Med Child Neurol. Aug 2002;44(8):561-571.
107. Olsen P, Paakko E, Vainionpaa L, Pyhtinen J, Jarvelin MR. Magnetic resonance imaging of periventricular leukomalacia and its clinical correlation in children. Ann. Neurol. Jun 1997;41(6):754-761.
108. Miniscalco C, Nygren G, Hagberg B, Kadesjo B, Gillberg C. Neuropsychiatric and neurodevelopmental outcome of children at age 6 and 7 years who screened positive for language problems at 30 months. Dev Med Child Neurol. May 2006;48(5):361-366.
109. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Developmental coordination disorder: a review and update. Eur. J. Paediatr. Neurol. Nov 2012;16(6):573-581.
110. Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci. Nov 16 1998;860:360-376.
111. Hanson MG, Landmesser LT. Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. J. Neurosci. Jan 15 2003;23(2):587-600.
112. Hadders-Algra M. General movements in early infancy: what do they tell us about the nervous system? Early Hum Dev. Sep 1993;34(1-2):29-37.
113. Touwen BC. Variability and stereotypy of spontaneous motility as a predictor of neurological development of preterm infants. Dev Med Child Neurol. Jun 1990;32(6):501-508.
114. Prechtl HF. Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum Dev. 1990.
115. Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Research. Upper Saddle. NJ: Prentice Hall Health; 2000.
116. Wilson SJ, Ross JJ, Harris AJ. A critical period for formation of secondary myotubes defined by prenatal undernourishment in rats. Development (Cambridge, England). Apr 1988;102(4):815-821.
117. Scherjon SA, Oosting H, Smolders-DeHaas H, Zondervan HA, Kok JH. Neurodevelopmental outcome at three years of age after fetal 'brain-sparing'. Early Hum Dev. Aug 28 1998;52(1):67-79.
118. Padilla N, Perapoch J, Carrascosa A, Acosta-Rojas R, Botet F, Gratacos E. Twelve-month neurodevelopmental outcome in preterm infants with and without intrauterine growth restriction. Acta paediatrica (Oslo, Norway : 1992). Oct 2010;99(10):1498-1503.
119. Levitsky DA, Strupp BJ. Malnutrition and the brain: changing concepts, changing concerns. J Nutr. Aug 1995;125(8 Suppl):2212s-2220s.
120. Hadders-Algra M, Touwen BC. Body measurements, neurological and behavioural development in six-year-old children born preterm and/or small-for-gestational-age. Early Hum Dev. Apr 1990;22(1):1-13.
121. Cioni G, Ferrari F, Einspieler C, Paolicelli PB, Barbani T, Prechtl HF. Comparison between observation of spontaneous movements and neurologic examination in preterm infants. J Pediatr. 1997;130(5):704-711.
122. Snider LM, Majnemer A, Mazer B, Campbell S, Bos AF. A comparison of the general movements assessment with traditional approaches to newborn and infant assessment: concurrent validity. Early Hum Dev. May 2008;84(5):297-303.
123. Orcesi S, Olivieri I, Longo S, et al. Neurodevelopmental outcome of preterm very low birth weight infants born from 2005 to 2007. Eur. J. Paediatr. Neurol. Nov 2012;16(6):716-723.
124. Stahlmann N, Hartel C, Knopp A, Gehring B, Kiecksee H, Thyen U. Predictive value of neurodevelopmental assessment versus evaluation of general movements for motor outcome in preterm infants with birth weights <1500 g. Neuropediatrics. Apr 2007;38(2):91-99.
125. Karemaker R, Heijnen CJ, Veen S, et al. Differences in behavioral outcome and motor development at school age after neonatal treatment for chronic lung disease with dexamethasone versus hydrocortisone. Pediatric research. Dec 2006;60(6):745-750.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw