進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508201617025200
論文名稱(中文) 糖尿病對周邊神經組織及神經內血管於在位環形壓縮下之力學表現之影響
論文名稱(英文) Effects of Diabetes Mellitus on Mechanical Behavior of Peripheral Nerve Tissues and Vasa Nervora under In Situ Circular Compression
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 湯君偉
研究生(英文) Chun-Wei Tang
學號 n16031752
學位類別 碩士
語文別 中文
論文頁數 166頁
口試委員 指導教授-朱銘祥
口試委員-林宙晴
口試委員-林啟倫
中文關鍵字 生物力學  周邊神經組織  神經內血管  糖尿病周邊神經病變  類線性黏彈理論  都普勒光學同調斷層掃描顯微術  有限元素法 
英文關鍵字 biomechanics  peripheral nerve tissues  vasa nervora  diabetic neuropathy  quasi-linear viscoelastic theory (QLV)  Doppler optical coherence tomography (D-OCT)  Finite element method (FEM) 
學科別分類
中文摘要 糖尿病為盛行之慢性病,糖尿病周邊神經病變為糖尿病主要的併發症之一,其病理機制目前並不明確,過去曾有相關研究提出缺血假說,而臨床上與腕隧道症候群發生率之間的關聯性,使得周邊神經組織與神經內血管在糖尿病與受壓狀況之下的力學表現值得探討。

本研究從組織生物力學的角度切入,藉由活體在位動物實驗,對大鼠坐骨神經進行環形壓縮應力鬆弛之力學測試,並採用類線性黏彈理論進行參數擬合以估測其機械性質,實驗同時以都普勒光學同調斷層掃描顯微術觀測神經內血流,並以自行設計之影像處理與分析方式估測神經內血管截面面積與形貌。另外,進行二維有限元素法模擬分析神經內部之應力分布。實驗結果發現糖尿病神經整體機械性質較偏向黏性,且糖尿病神經內主要血管於受壓狀況下有較大塌陷閉合的機率,有限元素法模擬結果顯示神經束膜為徑向受壓狀況下主要的應力承受結構,而神經外膜則具有緩衝墊之功能,並且也顯示神經外膜中特定區域之血管在神經受壓狀況下較不易坍塌,切片影像的統計也顯示常見主要較大之血管座落於該區域,另外模擬與實驗相比較之結果支持神經內血管於受壓狀況之下具有自動調節的功能。
英文摘要 Ischemia of vasa nervora in peripheral nerves may be the main cause of diabetic neuropathies. Diabetic neuropathies are also related to clinical morbidity of carpal tunnel syndrome. Thus, from biomechanics perspective, study of mechanical behavior of peripheral nerve tissues and vasa nervora under compression and diabetic circumstances may help understanding mechanisms of retarded blood flow in nerve. In this study, in situ compress-and-hold experiments were implemented by circular compression on sciatic nerve of rats and blood flow within vasa nervorum was observed by using Doppler optical coherence tomography (D-OCT) simultaneously. Mechanical property of nerves was determined by fitting the data from the experiments with a quasi-linear viscoelasticity (QLV) model. Cross sectional area and morphology of vasa nervorum and their variations with time were estimated from D-OCT image data using new methods. The finite element method (FEM) was utilized to simulate stress distribution and morphology changes of substructures in the nerve. Results of this study suggested diabetic nerves are more viscous in mechanical property and their vasa nervora are more vulnerable to circular compression. Results from FEM suggested that the perineurium could sustain more stress while the epineurium served as cushion under circular compression. The results also indicated there are specific regions in epineurium which sustained less stress and blood vessels in such regions had less tendency to collapse. The large blood vessels in nerve are most likely to be settled on these regions according to tissue slices. Comparison between D-OCT data and FEM results suggested that vasa nervora have auto-regulation ability.
論文目次 摘要.......................................................i
誌謝.......................................................x
目錄......................................................xi
圖目錄...................................................xiv
表目錄...................................................xxi
符號表..................................................xxii
第一章 緒論...............................................1
1.1神經系統簡介............................................1
1.2周邊神經解剖............................................4
1.3周邊神經結締組織........................................5
1.4周邊神經血液循環........................................9
1.5糖尿病造成周邊神經病變.................................13
1.6組織生物力學簡介.......................................16
1.7光學同調斷層掃描顯微術.................................17
1.8有限元素法概述.........................................19
1.9文獻回顧...............................................21
1.10研究動機與目的........................................25
1.11本文架構..............................................26
第二章 研究方法..........................................27
2.1研究方法概述...........................................27
2.2實驗動物樣本...........................................28
2.3實驗設備設置...........................................30
2.4在位環形壓縮實驗程序...................................34
2.4.1應變與應力定義.......................................35
2.4.2壓縮初始點定義.......................................36
2.4.3前處理...............................................38
2.4.4應力鬆弛測試.........................................40
2.4.5都普勒光學同調斷層掃描顯微影像紀錄...................41
2.5類線性黏彈理論參數擬合.................................42
2.5.1類線性黏彈理論本構方程式.............................42
2.5.2最佳化參數擬合.......................................46
2.6都普勒光學同調斷層掃瞄顯微影像分析.....................51
2.6.1影像色彩區分.........................................51
2.6.2影像像素位置統計並定義血管區域.......................55
2.6.3影像折射率校正.......................................57
2.6.4血管面積、形貌與位置.................................59
2.7有限元素法模擬分析.....................................60
2.7.1組織切片影像與幾何模型建立...........................60
2.7.2網格與元素...........................................61
2.7.3材料本構方程式與材料參數給定.........................65
2.7.4組織界面性質.........................................70
2.7.5分析步負載與邊界條件.................................71
第三章 結果..............................................72
3.1樣本生理資訊與量測有效數據.............................72
3.2類線性黏彈理論參數擬合結果.............................74
3.3光學同調斷層掃描顯微術測量血管面積與形貌變化結果.......85
3.4組織切片影像..........................................104
3.5有限元素法模擬分析結果................................114
第四章 討論.............................................138
4.1周邊神經力學特性......................................138
4.2神經內血管於受壓下之力學表現..........................140
4.3研究方法之限制........................................142
4.4有限元素法模擬之調整..................................148
第五章 結論與建議.......................................149
5.1結論..................................................149
5.2建議..................................................150
附錄A 調整後有限元素法模擬分析結果......................151
參考文獻.................................................162

參考文獻 [1] O. Appenzeller, K. K. Dhital, T. Cowen, G. Burnstock,“The nerves to blood vessels supplying blood to nerves: the innervation of vasa nervorum,”Brain research, 304(2), 383-386, 1984.
[2] K. G. M. M. Alberti, P. F. Zimmet,“Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation,”Diabetic medicine, 15(7), 539-553, 1998.
[3] M. J. Brown, A. K. Asbury,“Diabetic neuropathy,”Annals of neurology, 15(1), 2-12, 1984.
[4] M. A. Bell, G. M. Weddell,“A descriptive study of the blood vessels of the sciatic nerve in the rat, man and other mammals,”Brain, 107(3), 871-898, 1984.
[5] J. Beggs, P. C. Johnson, A. Olafsen, C. J. Watkins,“Innervation of the vasa nervorum: changes in human diabetics,”Journal of Neuropathology & Experimental Neurology, 51(6), 612-629, 1992.
[6] L. E. Bilston (Ed.),“Neural tissue biomechanics,”Springer, Berlin/Heidelberg, 2011.
[7] J. M. Bilbao, R. E. Schmidt,“Biopsy diagnosis of peripheral neuropathy 2nd ed.,”Springer International Publishing, Cham, 2015.
[8] N. R. Carlson,“Foundations of physiological psychology 7th ed.,”Pearson/Allyn and Bacon, Boston, 2008.
[9] C. T. Chang, Y. H. Chen, C.-C. K. Lin, M.-S. Ju,“Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures,”Journal of biomechanics, 48(10), 1982-1987, 2015.
[10] P. J. Dyck, A. C. Lais, C. Giannini, J. K. Engelstad,“Structural alterations of nerve during cuff compression,”Proceedings of the National Academy of Sciences, 87(24), 9828-9832, 1990.
[11] P. J. Dyck, K. M. Kratz, J. L. Karnes, W. J. Litchy, R. Klein, J. M. Pach, et, al.,“The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population‐based cohort The Rochester Diabetic Neuropathy Study,”Neurology, 43(4), 817-817, 1993.
[12] P. J. Dyck, C. Giannini,“Pathologic alterations in the diabetic neuropathies of humans: a review,”Journal of Neuropathology & Experimental Neurology, 55(12), 1181-1193, 1996.
[13] W. Drexler, J. G. Fujimoto,“Optical coherence tomography: Technology and applications,”Springer, Berlin/Heidelberg, 2008.
[14] Dassault Systèmes,“ABAQUS User’s & Theory Manuals—Release 6.13-1,”Providence, 2013.
[15] Dassault Systèmes Simulia Corp., 士盟瑞其CAE團隊 (編著),“Abaqus最新實務入門引導,”全華圖書, 新北市, 2013.
[16] Y. C. Fung,“Foundations of solid mechanics,”Prentice-Hall, Englewood Cliffs, 1965.
[17] Y. C. Fung, K. Fronek, P. Patitucci,“Pseudoelasticity of arteries and the choice of its mathematical expression,”American Journal of Physiology-Heart and Circulatory Physiology, 237(5), H620-H631, 1979.
[18] Y. C. Fung,“Biomechanics : mechanical properties of living tissues 2nd ed.,”Springer-Verlag, New York, 1993.
[19] Y.C. Fung,“A first course in continuum mechanics : for physical and biological engineers and scientists 3rd ed.,”Prentice Hall, Englewood Cliffs, 1994.
[20] M. D. Greenberg,“Foundations of Applied Mathematics,”Prentice-Hall, Englewood Cliffs, 1978.
[21] C. Giannini, P. J. Dyck,“Ultrastructural morphometric features of human sural nerve endoneurial microvessels,”Journal of Neuropathology & Experimental Neurology, 52(4), 361-369, 1993.
[22] J. A. Gregory,“Peripheral nerve function and structure in experimental models of diabetic neuropathy,”ProQuest, 2008.
[23] Y. Grinberg, M. A. Schiefer, D. J. Tyler, K. J. Gustafson,“Fascicular perineurium thickness, size, and position affect model predictions of neural excitation,”IEEE transactions on neural systems and rehabilitation engineering, 16(6), 572-581, 2008.
[24] M.-S. Ju, C.-C. K. Lin, J. L. Fan, R. J. Chen,“Transverse elasticity and blood perfusion of sciatic nerves under in situ circular compression,”Journal of biomechanics, 39(1), 97-102, 2006.
[25] M. Kihara, P. A. Low,“Regulation of rat nerve blood flow: role of epineurial alpha-receptors,”The Journal of physiology, 422, 145, 1990.
[26] M. K. Kwan, E. J. Wall, J. Massie, S. R. Garfin,“Strain, stress and stretch of peripheral nerve Rabbit experiments in vitro and in vivo,”Acta Orthopaedica Scandinavica, 63(3), 267-272, 1992.
[27] P. A. Low, R. R. Tuck,“Effects of changes of blood pressure, respiratory acidosis and hypoxia on blood flow in the sciatic nerve of the rat,”The Journal of physiology, 347(1), 513-524, 1984.
[28] H. Li, L. Lin, S. Xie,“Refractive index of human whole blood with different types in the visible and near-infrared ranges,”In BiOS 2000 The International Symposium on Biomedical Optics, 517-521, 2000.
[29] G. Lundborg,“Nerve injury and repair: regeneration, reconstruction, and cortical remodeling 2nd ed.,”Elsevier/Churchill Livingstone, Philadelphia, 2004.
[30] B. E. Layton, A. M. Sastry,“A mechanical model for collagen fibril load sharing in peripheral nerve of diabetic and nondiabetic rats,”Journal of biomechanical engineering, 126(6), 803-814, 2004.
[31] B. I. Levy, G. Ambrosio, A. R. Pries, H. A. J. Struijker-Boudier,“Microcirculation in Hypertension A New Target for Treatment? ,”Circulation, 104(6), 735-740, 2001.
[32] R. R. Myers, H. C. Powell, M. L. Costello, P. W. Lampert, B. W. Zweifach,“Endoneurial fluid pressure: direct measurement with micropipettes,”Brain research, 148(2), 510-515, 1978.
[33] R. R. Myers, H. Murakami, H. C. Powell,“Reduced nerve blood flow in edematous neuropathies: a biomechanical mechanism,”Microvascular research, 32(2), 145-151, 1986.
[34] R. R. Myers, B. L. Rydevik, H. M. Heckman, H. C. Powell,“Proximodistal gradient in endoneurial fluid pressure,”Experimental neurology, 102(3), 368-370, 1988.
[35] H. Millesi, G. Zöch, R. Reihsner,“Mechanical properties of peripheral nerves,”Clinical orthopaedics and related research, 314, 76-83, 1995.
[36] K. L. Moore, A. F. Dalley,“Clinically oriented anatomy 5th ed.,”Lippincott Williams & Wilkins, Baltimore/Philadelphia, 2006.
[37] M. A. Marcus, K. J. Hadcock, D. S. Gibson, M. E. Herbrand, F. V. Ignatovich,“Precision interferometric measurements of refractive index of polymers in air and liquid,”In SPIE Optifab, 88841L-88841L, 2013.
[38] Y. Olsson, T. S. Reese,“Permeability of vasa nervorum and perineurium in mouse sciatic nerve studied by fluorescence and electron microscopy,”Journal of Neuropathology & Experimental Neurology, 30(1), 105-119, 1971.
[39] R. W. Ogden,“Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids,”In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 326(1567), 565-584, 1972.
[40] M. A. Puso, J. A. Weiss,“Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation,”Journal of Biomechanical Engineering, 120(1), 62-70, 1998.
[41] R. R. Preston, T. E. Wilson,“Physiology,”Lippincott Williams & Wilkins, Baltimore/Philadelphia, 2012.
[42] B. Rydevik, G. Lundborg,“Permeability of intraneural microvessels and perineurium following acute, graded experimental nerve compression,”Scandinavian journal of plastic and reconstructive surgery, 11(3), 179-187, 1977.
[43] B. Rydevik, G. Lundborg, U. Bagge,“Effects of graded compression on intraneural blood flow: an in vivo study on rabbit tibial nerve,”The Journal of hand surgery, 6(1), 3-12, 1981.
[44] J.N. Reddy,“An introduction to the finite element method 3rd ed.,”McGraw-Hill Higher Education, Boston/New York, 2006.
[45] S. S. Rao,“Engineering optimization : Theory and practice,”John Wiley & Sons, Hoboken, 2009.
[46] R. Rohkamm,“Color atlas of neurology 2nd ed.,”Thieme, Stuttgart, 2014.
[47] P. S. Spencer, H. J. Weinberg, C. S. Raine, J. W. Prineas,“The perineurial window—a new model of focal demyelination and remyelination,”Brain research, 96(2), 323-329, 1975.
[48] D. R. Smith, A. I. Kobrine, H. V. Rizzoli,“Absence of autoregulation in peripheral nerve blood flow,”Journal of the neurological sciences, 33(3), 347-352, 1977.
[49] S. Sunderland,“Nerves and nerve injuries 2nd ed.,”Churchill Livingstone, Edinburgh/New York, 1978.
[50] J. Seki,“Flow pulsation and network structure in mesenteric microvasculature of rats,”American Journal of Physiology-Heart and Circulatory Physiology, 266(2), H811-H821, 1994.
[51] A. Stevens, J. Lowe,“Human histology 2nd ed.,”Mosby, London, 1997.
[52] J. Schanda (Ed.),“Colorimetry: understanding the CIE system,”John Wiley & Sons, Hoboken, 2007.
[53] M. Sato, M. S. Hrebesh, I. Nishidate,“Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,”Applied optics, 48(22), 4354-4364, 2009.
[54] K. S. Topp, B. S. Boyd,“Structure and biomechanics of peripheral nerves: nerve responses to physical stresses and implications for physical therapist practice,”Physical therapy, 86(1), 92-109, 2006.
[55] Thorlabs Inc.,“Swept source OCT system software user’s manual,”Newton, 2008.
[56] E. E. Ubogu,“The molecular and biophysical characterization of the human blood-nerve barrier: current concepts,”Journal of vascular research, 50(4), 289-303, 2013.
[57] E. J. Wall, M. K. Kwan, B. L. Rydevik, S. L. Woo, S. R. Garfin,“Stress relaxation of a peripheral nerve,”The Journal of hand surgery, 16(5), 859-863, 1991.
[58] D. B. Wilson, W. J. Wilson, 沈清良(鑑譯),“人體解剖學Human anatomy 第二版,”逸香股份有限公司, 台南市, 1992.
[59] D. R. Whiting, L. Guariguata, C. Weil, J. Shaw,“IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030,”Diabetes research and clinical practice, 94(3), 311-321, 2011.
[60] B. Young, J. W. Heath,“Wheater's functional histology 4th ed.,”Churchill Livingstone, Edinburgh, 2000.
[61] D. W. Zochodne, P. A. Low,“Adrenergic control of nerve blood flow,”Experimental neurology, 109(3), 300-307, 1990.
[62] D. W. Zochodne,“Diabetes mellitus and the peripheral nervous system: manifestations and mechanisms,”Muscle & nerve, 36(2), 144-166, 2007.
[63] 陳榮健,“類線性黏彈理論於正常與糖尿病變周邊神經組織在位力學與類神經細胞力學之研究,”國立成功大學機械工程學系:博士論文, 2010.
[64] 陳煜欣,“有限元素模型與光學同調斷層掃描術於周邊神經組織之黏彈性力學之研究,”國立成功大學機械工程學系:碩士論文, 2012.
[65] 傅振宗, 陳慕師, 陳冰虹, 戴東原,“糖尿病的小血管病變,”臺灣醫學, 1(2), 165-175, 1997.
[66] 曾冠豪,“三維有限元素模型與光學同調斷層掃描術於正常與糖尿病變周邊神經組織黏彈性力學之研究,”國立成功大學機械工程學系:碩士論文, 2013.
[67] 葉東波(主編),“永大簡明道氏醫學辭典 第二版,”永大, 台北市, 2004.
[68] 謝博弈,“利用在位環形壓縮與光同調斷層掃描觀察糖尿病對神經內血管之影響,” 國立成功大學機械工程學系:碩士論文, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw