進階搜尋


下載電子全文  
系統識別號 U0026-2508201615513800
論文名稱(中文) 1994~2014年間台灣地區GPS大氣可降水量與太平洋年代際振盪之關係
論文名稱(英文) Relationship Between Pacific Inter-Decadal Oscillation and GPS-derived Precipitable Water Vapor in the Taiwan Region During 1994~2014
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 104
學期 2
出版年 105
研究生(中文) 王信閎
研究生(英文) Sin-Hong Wang
學號 l46031023
學位類別 碩士
語文別 中文
論文頁數 98頁
口試委員 指導教授-饒瑞鈞
口試委員-宋偉國
口試委員-盧孟明
口試委員-柯亙重
口試委員-景國恩
中文關鍵字 可降水量  太平洋年代際振盪  氣候變遷  全球定位系統 (GPS) 
英文關鍵字 Precipitable Water Vapor  Pacific Decadal Oscillation  Climate Change  GPS 
學科別分類
中文摘要 近年來氣候變遷一直是人們所關注的問題,氣候急速的變遷對於生態環境、極端天氣、經濟方面等造成嚴重的衝擊,若能藉由我們對目前氣候的了解,去推估之後近期氣候的發展,減少這樣氣候變遷下的衝擊與損失,推估近期的氣候變遷是一項非常重要的工作之一,而在IPCC AR4 (2007) 更指出氣候急速變遷下若欲推估近期的氣候變遷,年代際振盪效應實為不可忽略的重要因素。
因此,本研究主要利用台灣1994年至2014年間由GPS解算所得之可降水量與太平洋年代際振盪 (Pacific Decadal Oscillation, PDO) 做比較,以了解此二者在台灣地區之關係。於研究中主要利用GAMIT 10.35進行天頂向對流層總延遲量 (Zenith Tropospheric Delay, ZTD) 之解算,並依據國際參考框架ITRF2008、IGS的最終星曆、Niell映射函數和衛星仰角設定為15度為計算基準,再藉由地面氣象經驗公式及地面氣象測站求出天頂向對流層乾延遲 (Zenith Hydrostatic Delay, ZHD),並利用Bevis et al. (1992, 1994) 提出的天頂向對流層濕延遲量轉換成可降水量 (Precipitable Water Vapor, PWV) 之方法進行轉換。為了確認GPS可降水量的可信度和精度,因此利用GPS可降水量和探空氣球可降水量進行比較,其20年資料的比較資料筆數大約有1萬多筆,平均的差值落在2 mm以內,其標準差也在5 mm以內,探空氣球和GPS可降水量的相關係數更是高達0.93,此結果與前人的結果相似。
在可降水量時間序列的分析中,可看出類似年週期的循環,因而進行傅立葉分析,其結果也顯示了明顯的年週期訊號;除了年週期訊號外,在時間序列的分析中也發現了,高山地區其可降水量之最大和最小值都比平原地區來得低。假設可降水量主要是由長期線性趨勢和年週期訊號組成,對此進行諧和分析,可以發現可降水量在台灣地區以平均每年0.38 mm的速度增加,其可降水量每年最大值約發生在七月十八日到七月二十四日之間,推測是由颱風以及豐富之西南氣流所挾帶來而的水氣而造成。再對資料進行低通濾波把可降水量距平中的高頻的訊號濾除,只留下年際間可降水量距平的訊號,更加瞭解可降水量與太平洋年代際振盪效應之關係,年際間可降水量的振幅也隨著高山和平原有所不同,其高山振幅比較小,平原振幅比較大,再者我們發現其年際間可降水量距平的訊號與太平洋年代際振盪指數 (PDO) 有著明顯的負相關,當年際間可降水量為負值時,太平洋年代際振盪為正值,反之亦然。



關鍵字 : 可降水量、太平洋年代際振盪、氣候變遷、全球定位系統 (GPS)
英文摘要 We investigate the relationship between Pacific Decadal Oscillation (PDO) index and Precipitable Water vapor (PWV) derived from GPS observations to understand the effects of climate change in the Taiwan region. The Zenith Tropospheric Delay (ZTD) observed at each GPS receiver in a network could be transformed into PWV by using transform factor which derived from weighted mean temperature and pressure near the GPS site. We study the characteristics of PWV at 22 GPS sites over the Taiwan region from 20 year data of 2-hours interval. Through the Fast Fourier Transform (FFT) analysis, the PWV presents a clear annual cycle, with a minimum value in the winter and a maximum value at the end of the summer. Using harmonic analysis, there is an average increasing trend is 0.38 mm/yr in Taiwan region from 1994 to 2014. We also study 20 years GPS-derived precipitable water vapor anomaly in Taiwan and use lower-pass filter to filter the high frequency data. After removing the data with frequency higher than 1/365 or 1/366 day, the filtered signal represents the inter-annual PWV anomaly and stands for the inter-annual change of water vapor. We found that inter-annual PWV anomaly decreases with elevation of the GPS station. It is found that the PDO Index has negative correlation with inter-annual PWV anomaly based on the almost 20 years GPS observations in Taiwan. We obtained an average cross correlation coefficient of 0.49 since 1994 to 2014 over 22 stations in Taiwan. After examining the Sea Surface Temperature, Sea Level Pressure and Wind Field, it is points that the SST is lower than normal condition and the SLP is higher than normal condition and the wind is northern wind near the Taiwan in the warm phase of PDO. The above result is reverse in the cold phase of PDO. According to our results that the PDO and inter-annual PWV anomaly is shown the negative correlation from 1994 to 2014.

Key words : Precipitable Water Vapor, Pacific Decadal Oscillation, Climate Change, GPS.
論文目次 摘要 I
Extended Abstract III
誌謝 VII
目錄 IX
圖目錄 XIV
表目錄 XVIII
一、緒論 1
1-1、論文架構 1
1-2、前言 2
1-3、前人文獻 3
1-4、研究動機與目的 5
二、理論基礎介紹 8
2-1、GPS衛星基礎理論 8
2-1-1、虛擬距離觀測 8
2-1-2、載波相位觀測 10
2-1-3、相對定位 11
2-1-4、無電離層線性組合 11
2-2、GPS氣象學 14
2-2-1、電離層延遲量 14
2-2-2、對流層延遲量 15
2-2-3、求解對流層延遲量 20
2-2-4、對流層乾延遲量 23
2-2-5、對流層濕延遲量與可降水量的轉換 24
三、研究方法、步驟與資料介紹 27
3-1、GPS資料與處理流程 27
3-1-1、GPS資料來源與分布 27
3-1-2、GPS解算流程和軟體 30
3-1-3、地面氣象資料處理 34
3-1-4、計算GPS可降水量 35
3-1-5、可降水量的日距平 36
3-1-6、年際間可降水量 36
3-2、探空氣球的資料與處理流程 38
3-2-1、儀器介紹與點位分布 38
3-2-2、探空氣球求取可降水量的資料 39
3-3、氣象資料處理 41
3-3-1、雨量資料處理 41
3-3-2、太平洋年代際振盪指數 42
3-3-3、全球海平面溫度 45
3-3-4、全球海平面氣壓、風場 45
四、研究成果 47
4-1、可降水量時間序列分析 47
4-1-1、週期性分析 47
4-1-2、特徵分析 51
4-2、GPS可降水量與探空氣球比較 54
4-2-1、可降水量和探空氣球的差值平均值、差值標準差 56
4-2-2、可降水量和探空氣球的相關係數 57
4-3、年際間可降水量距平、年際間雨量距平與太平洋年代際振盪之關係 58
4-3-1、年際間可降水量距平分析 58
4-3-2、可降水量距平季節傾向分析 63
4-3-3、年際間雨量距平分析 66
4-3-4、太平洋年代際振盪與年際間可降水量距平和年際間雨量距平之關係 68
4-4、環流場分析 71
4-4-1、模式再分析資料的水氣距平 71
4-4-2、海溫距平與850 hpa風場距平 75
4-4-3、海平面氣壓與850 hpa風場距平 78
五、成果討論 81
5-1、可降水量時間序列分析 81
5-2、GPS可降水量與探空氣球比較 82
5-3、年際間可降水量距平、年際間雨量距平與太平洋年代際振盪之關係 82
5-4、環流場分析與形成機制探討 85
六、結論 86
參考文獻 87
附錄一、國內GPS測站點位資訊 94
附錄二、氣象儀測站點位資訊 95
附錄三、國際GPS約制站點位資訊 98
參考文獻 陳文建 (2006),GPS與探空氣球資料觀測可降水量與降雨之關係,國立中央大學太空科學研究所碩士論文。
許晃雄、陳正達、盧孟明、陳永明、周佳和吳宜昭 (2011),臺灣氣候變遷科學報告2011,行政院國家科學委員會,共362頁。
曾清凉、儲美慶 (1999),GPS衛星量測與應用,國立成功大學衛星資訊中心。
溫瑜培 (2010),菲律賓馬里其納谷斷層活動性研究─GPS連續觀測,國立成功大學地球科學研究所碩士論文。
鄭琦翰 (2004),GPS信號估算可降水量與降雨關係之研究,國立中央大學水文科學研究所碩士論文。

Askne, J., and H. Nordius (1987), Estimation of tropospheric delay for microwaves from surface weather data, Radio Sci., 22(3), 379–386, doi:10.1029/RS022i003p00379.
Bauersima, I. (1983), NAVSTAR/Global Positioning System (GPS). (II). Radiointerferometrische Satellitenbeobachtungen, Vol. 10, Switzerland: Astronomical Institute, University of Berne.
Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware (1992), GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res., 97(D14), 15787–15801, doi:10.1029/92JD01517.
Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware (1994), GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, J. Appl. Meteor., 33(3), 379–386, doi:10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.
Boehm, J., A. Niell, P. Tregoning, and H. Schuh (2006a), Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett., 33(7), L07304, doi:10.1029/2005GL025546.
Boehm, J., B. Werl, and H. Schuh (2006b), Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res., 111(B2), B02406, doi:10.1029/2005JB003629.
Buck, A. L. (1981), New Equations for Computing Vapor Pressure and Enhancement Factor, J. Appl. Meteor., 20(12), 1527–1532, doi:10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2.
Businger, S., S. R. Chiswell, M. Bevis, J. Duan, R. A. Anthes, C. Rocken, R. H. Ware, M. Exner, T. VanHove, and F. S. Solheim (1996), The Promise of GPS in Atmospheric Monitoring, Bull. Amer. Meteor. Soc., 77(1), 5–18, doi:10.1175/1520-0477(1996)077<0005:TPOGIA>2.0.CO;2.
Chao, C. C. (1973), A new method to predict wet zenith range correction from surface measurements, JPL Tech. Rep. 32-1526 XIV, 61–76, Jet Propulsion Lab., Pasadena, California.
Davis, J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered (1985), Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci., 20(6), 1593–1607, doi:10.1029/RS020i006p01593.
Dong, B., and A. Dai (2015), The influence of the Interdecadal Pacific Oscillation on Temperature and Precipitation over the Globe, Clim Dyn, 45(9–10), 2667–2681, doi:10.1007/s00382-015-2500-x.
Elgered, G., J. L. Davis, T. A. Herring, and I. I. Shapiro (1991), Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay, J. Geophys. Res., 96(B4), 6541–6555, doi:10.1029/90JB00834.
Feng, J., L. Wang, and W. Chen (2014), How Does the East Asian Summer Monsoon Behave in the Decaying Phase of El Niño during Different PDO Phases?, J. Climate, 27(7), 2682–2698, doi:10.1175/JCLI-D-13-00015.1.
Foster, J., M. Bevis, T. Schroeder, M. Merrifield, S. Businger, S. Dorn, S. Marcus, J. Dickey, and Y. Bar-Sever (2000), El Niño, water vapor, and the global positioning system, Geophys. Res. Lett., 27(17), 2697–2700, doi:10.1029/2000GL011429.
Herring, T. A., J. L. Davis, and I. I. Shapiro (1990), Geodesy by radio interferometry: The application of Kalman Filtering to the analysis of very long baseline interferometry data, J. Geophys. Res., 95(B8), 12561–12581, doi:10.1029/JB095iB08p12561.
Herring, T. A., R. W. King, and S. C. McClusky (2009), Introduction to GAMIT/GLOBK, Release 10.35, Mass. Inst. of Technol., Cambridge.
Houghton J. T., J. A. Lakeman L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (1996), Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, IPCC., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Hung, C., H.-H. Hsu, and M.-M. Lu (2004), Decadal oscillation of spring rain in northern Taiwan, Geophys. Res. Lett., 31(22), L22206, doi:10.1029/2004GL021344.
Janes, H. W., R. B. Langley, and S. P. Newby (1991), Analysis of tropospheric delay prediction models: comparisons with ray-tracing and implications for GPS relative positioning, Bulletin Géodésique, 65(3), 151–161, doi:10.1007/BF00806344.
Jin, S., J.-U. Park, J.-H. Cho, and P.-H. Park (2007), Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications, J. Geophys. Res., 112(D9), D09110, doi:10.1029/2006JD007772.
Kouba, J. (2007), Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1), J Geod, 82(4–5), 193–205, doi:10.1007/s00190-007-0170-0.
Liou, Y.-A., Y.-T. Teng, T. Van Hove, and J. C. Liljegren (2001), Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes, J. Appl. Meteor., 40(1), 5–15, doi:10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2.
Mantua, N. J., and S. R. Hare (2002), The Pacific Decadal Oscillation, Journal of Oceanography, 58(1), 35–44, doi:10.1023/A:1015820616384.
Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis (1997), A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production, Bull. Amer. Meteor. Soc., 78(6), 1069–1079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.
Musa, T. A., S. Amir, R. Othman, S. Ses, K. Omar, K. Abdullah, S. Lim, and C. Rizos (2011), GPS meteorology in a low-latitude region: Remote sensing of atmospheric water vapor over the Malaysian Peninsula, Journal of Atmospheric and Solar-Terrestrial Physics, 73(16), 2410–2422, doi:10.1016/j.jastp.2011.08.014.
Niell, A. E. (1996), Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res., 101(B2), 3227–3246, doi:10.1029/95JB03048.
Ortiz de Galisteo, J. P., Y. Bennouna, C. Toledano, V. Cachorro, P. Romero, M. I. Andrés, and B. Torres (2014), Analysis of the annual cycle of the precipitable water vapour over Spain from 10-year homogenized series of GPS data, Q.J.R. Meteorol. Soc., 140(679), 397–406, doi:10.1002/qj.2146.
Owens, J. C. (1967), Optical Refractive Index of Air: Dependence on Pressure, Temperature and Composition, Applied Optics, 6(1), 51, doi:10.1364/AO.6.000051.
Puviarasan, N., A. K. Sharma, M. Ranalkar, and R. K. Giri (2015), Onset, advance and withdrawal of southwest monsoon over Indian subcontinent: A study from precipitable water measurement using ground based GPS receivers, Journal of Atmospheric and Solar-Terrestrial Physics, 122, 45–57, doi:10.1016/j.jastp.2014.10.010.
Rocken, C., R. Ware, T. Van Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis, and S. Businger (1993), Sensing atmospheric water vapor with the global positioning system, Geophys. Res. Lett., 20(23), 2631–2634, doi:10.1029/93GL02935.
Rózsa, S. (2012), Estimation of Integrated Water Vapour from GPS Observations Using Local Models in Hungary, in Geodesy for Planet Earth, edited by S. Kenyon, M. C. Pacino, and U. Marti, pp. 817–823, Springer Berlin Heidelberg.
Saastamoinen, J. (1972), Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites, in The Use of Artificial Satellites for Geodesy, edited by S. W. Henriksen, Armandoncini, and B. H. Chovitz, pp. 247–251, American Geophysical Union.
Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (2013) : Climate Change 2013 : The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO9781107415324.
Thayer, G. D. (1974), An improved equation for the radio refractive index of air, Radio Sci., 9(10), 803–807, doi:10.1029/RS009i010p00803.
Tralli, D. M., T. H. Dixon, and S. A. Stephens (1988), Effect of wet tropospheric path delays on estimation of geodetic baselines in the Gulf of California using the Global Positioning System, J. Geophys. Res., 93(B6), 6545–6557, doi:10.1029/JB093iB06p06545.
Tregoning, P., R. Boers, D. O’Brien, and M. Hendy (1998), Accuracy of absolute precipitable water vapor estimates from GPS observations, J. Geophys. Res., 103(D22), 28701–28710, doi:10.1029/98JD02516.
Vey, S., R. Dietrich, M. Fritsche, A. Rülke, P. Steigenberger, and M. Rothacher (2009), On the homogeneity and interpretation of precipitable water time series derived from global GPS observations, J. Geophys. Res., 114(D10), D10101, doi:10.1029/2008JD010415.
Wallace, J. M. and P. V. Hobbs, (1977), Atmosphere science-an introductory survey. Atmospheric Science, 1.
Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott (2005), ICOADS release 2.1 data and products, Int. J. Climatol., 25(7), 823–842, doi:10.1002/joc.1166.
Wu, Z., N. E. Huang, S. R. Long, and C.-K. Peng (2007), On the trend, detrending, and variability of nonlinear and nonstationary time series, PNAS, 104(38), 14889–14894, doi:10.1073/pnas.0701020104.
Zhang, Y., J. M. Wallace, and D. S. Battisti (1997), ENSO-like Interdecadal Variability: 1900–93, J. Climate, 10(5), 1004–1020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw