進階搜尋


 
系統識別號 U0026-2508201518393700
論文名稱(中文) 鹽水層二氧化碳封存井壁穩定性分析
論文名稱(英文) Wellbore Stability Analysis of CO2 Sequestration in Saline Aquifer
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 陳璽元
研究生(英文) Hsi-Yuan Chen
電子信箱 as549549@hotmail.com
學號 N46024028
學位類別 碩士
語文別 英文
論文頁數 75頁
口試委員 指導教授-謝秉志
口試委員-林再興
口試委員-王建力
中文關鍵字 二氧化碳封存  鹽水層  井壁穩定  摩爾庫倫破壞準則 
英文關鍵字 CCS  saline aquifer  wellbore stability  Mohr-Coulomb criteria 
學科別分類
中文摘要 降低大氣中溫室氣體的含量有助於減緩全球暖化的影響,而二氧化碳地質封存是目前被認為減少人為排放溫室氣體的有效方法之一。在二氧化碳地質封存的選項中,最具有封存潛力的是使用深部鹽水層。在大部分二氧化碳封存的計畫中,由於注入的二氧化碳溫度低於地層溫度,可能會導致地層中產生裂縫,影響封存的安全性。因此,本研究的主要目的是建立地層應力場計算模式,並藉由摩爾庫倫破壞準則,分析二氧化碳注入時注入井井壁的穩定性,並研究低溫二氧化碳注入高溫地層所造成的影響。
在井壁穩定性分析當中,分別研究四個地層應力場分量,分別是(1) 鑽井後現地重分配應力、(2)井內與地層壓力差所造成的應力、(3)地層孔隙壓力改變造成的應力、以及(4)注入流體與地層溫度差所造成的應力。
本研究利用所推導的應力場計算模式及摩爾庫倫破壞準則,進行台灣中西部鐵砧山區域內,深度5200英呎的鹽水層的案例分析。分析結果顯示,當注入低溫的二氧化碳時,合適的注入壓差容許值為600 psi。超過600 psi 將會導致井壁的破壞。另外,本研究也發現溫度差異對應力場的變化相當大。當低溫的流體注入高溫的地層時,地層的有效應力會下降,在井壁位置90度方向的應力狀態會由壓應力轉變成張應力,有可能產生張力破壞。本研究所建立的應力場計算模式可以應用在二氧化碳封存計畫或是天然氣儲氣窖當中。
英文摘要 The reduction of greenhouse gases is helpful to mitigate the effects of global warming. Geological sequestration of CO2 is a promising solution to reduce net emissions of greenhouse gases into the atmosphere. Deep saline water-saturated reservoir rocks (saline aquifer) has the best storage potential in the options of CO2 geological sequestration. While injecting the CO2, spontaneous fracturing might take place with injection temperature below reservoir temperature. The purpose of this study was to analyze wellbore stability by using Mohr-Coulomb failure criterion while injecting CO2 into a saline aquifer. The stresses used in Mohr-Coulomb failure analysis were calculate from the model we derived. The safe wellbore pressure buildup was analyzed from the failure criteria. The effects of low temperature CO2 flowing into the high temperature saline aquifer were discussed.
In the wellbore stability analysis, the following four stress fields around the wellbore are concerned. (1) nonhydrostatic regional stresses after well drilled, (2) stress induced due to pressure difference, (3) stress induced due to pore pressure changing and (4) stress induced due to temperature changing.
A case of CO2 saline aquifer storage, located in Tienchanshan field, west-central Taiwan, was studied. The estimated allowing wellbore pressure buildup was 600 psi for a 5200 ft deep saline formation, based on the calculated stress field with the Mohr-Coulomb failure criteria. The temperature difference between the injected CO2 at the reservoir was critical on the stress fields. When the low temperature fluid was injected to a high temperature reservoir, the tensile stresses will be developed in wellbore wall of 90 degrees direction, which increases the risk of a tensile failure. The model derived in this study can be applied to CO2 sequestration and gas storage.
論文目次 Abstract I
中文摘要 III
致謝 IV
Contents VI
List of Tables VIII
List of Figures IX
Nomenclature XI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Purpose 3
Chapter 2 Literature Review 4
2.1 Formation stress field 4
2.2 Thermal stress 5
2.3 Mohr-Coulomb failure criteria 6
Chapter 3 Basic theory 8
3.1 Stress field around the borehole 8
3.1.1 Nonhydrostatic regional stresses induced stresses (first stress field) 9
3.1.2 Stress induced due to pressure difference (second stress field) 10
3.1.3 Stress induced due to pore pressure changing(third stress field) 11
3.1.4 Stress induced due to temperature changing(fourth stress field) 12
3.1.5 Superposition 13
3.2 Failure criterion 16
3.2.1 Mohr–Coulomb failure criterion 16
3.2.1 Modified Mohr–Coulomb failure criterion 17
Chapter 4 Results 19
4.1 Properties of saline aquifer 19
4.2 Stress field calculations 20
Chapter 5 Discussions 31
5.1 Stress field without thermal effects 31
5.2 Different injecting differential pressure 35
Chapter 6 Conclusions 43
6.1 Conclusions 43
6.2 Suggestions for future work 44
References 45
Appendix A: Derivation of second stress fields formula 48
Appendix B: Derivation of third and fourth stress fields formula 51
Appendix C: Sensitivity analysis of formation thermal expansion coefficient 55


參考文獻 Biot, M.A., 1941. General Theory of Three-Dimensional Consolidation, Journal of Applied Physics, Vol. 12, pp. 155-164.
Boley, B. A. and Weiner, J. H., 1960. Theory of Thermal Stresses. John Wiley, New York.
Cavanagh A. and Ringrose P., 2011. Simulation of CO2 distribution at the In Salah storage site using high-resolution field-scale models. Energy Procedia, 4:3730-3737.
Chen Guizhong, Ewy Russell T., 2005. Thermoporoelastic effect on wellbore stability. SPE Journal, Volume 10, Issue 2, Pages 121-129.
Coates, G.R. and Denoo, S.A., 1981. Mechanical properties program using borehole analysis and Mohr’s circle, proc., SPWLA 22nd Annual Logging Symposium, Mexico City, June 23-26, Paper DD.
Dake, L.P., 1978. Fundamentals of reservoir engineering. Elsevier Scientific Publishing Company, New York.
Gasda Sarah, Darcis Melanie, White Mark, Flemisch Bernd, and Holger, 2013. Geomechanical behavior of CO2 storage in Saline Aquifers (GeoCoSA): benchmark problem description.
Goodman, R.E., 1989. Introduction to rock mechanics (second edition). John Wiley & Sons, Canada.
Haimson B. and Fairhurst C., 1967. Initiation and extension of hydraulic fractures in rocks. Society of Petroleum Engineers Journal, Vol. 7, pp. 310-318.
Haimson Bezalel, Fairhurst Charles, 1967. Initiation and extension of hydraulic fractures in rocks. Society of Petroleum Engineers Journal, volume 7, issue 3, pages 310-318.
Hubbert, M. K. and Willis, D. G., 1957. Mechanics of Hydraulic Fracturing. Trans., AIME (1957) Vol. 210, 153-163.
IPCC, 2005. Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, New York, N.Y.
Jaeger J. C. and Cook N. G. W., 1979. Fundamental of Rock Mechanics. Chapman & Hall, London.
Jaeger, J.C., Cook, N.G.W. and Zimmerman, R.W., 2007. Fundamentals of rock mechanics fourth edition. Blackwell, pp. 3-158.
Kelly T.R., 2006. Utilizing Compositional Simulation for Material Balance and Bottomhole Pressure Calculations in CO2 WAG Floods. 2006 SPE/DOE Symposium on Improved Oil Recovery held in Tulsa, Oklahoma, U.S.A., 22-26 April 2006.
Ruan Binglu, Xu Ruina, Wei Lingli, Ouyang Xiaolong, Luo Feng, Jiang Peixue, 2013. Flow and thermal modeling of CO2 in injection well during geological sequestration. International Journal of Greenhouse Gas Control, volume 19, pages 271-280.
Tang Lin, Luo Pinya, 1998. The effect of the thermal stress on wellbore stability. SPE India Oil and Gas Conference and Exhibition, 17-19 February, New Delhi, India.
Timoshenko, S.P. and Goodier, J.N., 1970. Theory of Elasticity, McGraw-Hill, New York.
Wang L.J., Hung J.H., Dong J.J., Wu B.Y., 2010. In-Situ Stress Field and Fault Reactivation in the Tienchanshan Field, West-central Taiwan. Paper presented at 2010 CIMME Annual Convention.
Wang Y., Dusseault M.B., 1991. Borehole yield and hydraulic fracture initiation in poorly consolidated rock strata—part II. permeable media, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 28, Issue 4, Pages 235-246.
Zoback, M.D., 2008. Reservoir geomechanics, pp. 9-137.
楊耿明、簡錦樹、饒瑞鈞、謝秉志、洪日豪、林殿順、王乾盈、倪春發,2014,台灣中北部沿海地區 CO2封存技術及注儲試驗。
謝秉志、范振暉、林再興,2005,地下儲氣窖多孔彈性地層應力場計算及井壁穩定分析研究,石油(2005),第41卷,第1期,第43-61頁。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw