進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508201419201400
論文名稱(中文) 轉爐石對重金屬鉻(VI)與砷(V)吸附能力之研究
論文名稱(英文) Study on Chromium(VI) and Arsenic(V) adsorption onto basic oxygen furnace slag
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 102
學期 2
出版年 103
研究生(中文) 高賢達
研究生(英文) Hsien-Ta Kao
學號 l46011049
學位類別 碩士
語文別 中文
論文頁數 112頁
口試委員 指導教授-陳燕華
口試委員-許聯崇
口試委員-林財富
口試委員-林宏明
中文關鍵字 轉爐石  六價鉻  五價砷  吸附能力  吸附機制 
英文關鍵字 BOF slag  Cr(VI)  As(V)  adsorption ability  adsorption mechanism 
學科別分類
中文摘要   有效地處理工業廢水及去除環境水資源中的重金屬離子是當今一大課題,本研究是利用轉爐石對水中Cr6+與As5+的吸附能力進行探討。轉爐石是煉鋼過程轉爐內最後產出的事業產物,主要成分為CaO, FeO, SiO2, Al2O3, MgO等,由於它的化學性質與表面形貌的非均性,使得轉爐石有獨特的吸附性質,在過去以爐石作為吸附劑的研究文獻中看到有顯著的效果,且它的高鹼度能夠有效的中和酸性廢水或酸性土壤環境,因此在廢水處理與環境改善方面,轉爐石極具有研究價值。
  本實驗分為吸附劑特性分析以及吸附能力之探討兩大部份。特性分析使用XRD分析出其晶相組成,利用SEM與EDS觀察其表面形貌及元素組成;吸附試驗則又可細分為動力吸附實驗、等溫吸附實驗、變溫吸附實驗,水溶液中Cr6+與As5+濃度的變化是以ICP-OES加以分析;最後以FTIR分析轉爐石表面吸附前後化學鍵結之變化。
  在XRD的分析結果中顯示轉爐石主要的礦物成分為二鈣矽石 (Ca2SiO4)、方鐵礦 (Fe0.925O)、方解石 (CaCO3)、石灰石 (CaO)、赤鐵礦 (Fe2O3)、方鐵錳礦 ((Mn,Fe)2O3)、黑鈣鐵礦 (Ca2Fe2O5)…等,而SEM的觀察中可以看見其顆粒形貌破碎不規則。
  轉爐石對Cr6+與As5+吸附實驗方面,動力吸附實驗的結果皆符合擬二階動力吸附模式,等溫吸附實驗結果二者都較符合Langmuir model,並計算出在25、35、45°C下的自由能為負值,反映出轉爐石對Cr6+與As5+吸附行為是自發反應。
  使用EDS分析吸附後樣品的元素分佈,顯示出Cr6+主要吸附在黑鈣鐵礦以及碳酸鈣上,二鈣矽石次之;而As5+主要也是富集吸附在黑鈣鐵礦上,而碳酸鈣以及二鈣矽石上也有觀察到少量的吸附。推測As5+與Cr6+離子是以錯合物的形式吸附在黑鈣鐵礦上,且以共沉澱的形式聚集在碳酸鈣與二鈣矽石上。
  本研究之結果顯示轉爐石對As5+與Cr6+之吸附效果不錯,尤其對高濃度As5+之吸附效率達95 %以上,故可知轉爐石在開發為處理廢水中之重金屬吸附劑有相當的潛力。
英文摘要 The objective of this study is to discuss the adsorption ability and mechanism of Cr6+ and As5+ onto basic oxygen furnace slags. The maximum Cr6+ and As5+ adsorption capacity of slag is 1.38 and 13.91 mg/g, respectively. Further, the Langmuir isotherm is more adequate in simulating the adsorption isotherm of Cr6+ and As5+. It also suggests that the experimental data are well fitted to the pseudo-second-order equation. The adsorption capacity of slags increases with the increasing temperature. This indicates the reaction is occurred through chemical adsorption. Basis on EDS analyses, the metal ions are adsorbed on the phases of calcite, larnite and srebrodolskite; the FTIR results also show the vibrational mode of calcite has a redshift after adsorption. It indicates the Cr6+ and As5+ ions are co-precipitated with calcium ions along with calcite precipitation to adsorbed onto calcite and larnite. Moreover, the metal ions can also formed complexes on srebrodolskite via the hydroxide layer of the mineral surface.
論文目次 中文摘要 I
Extended Abstract III
誌謝 IX
目錄 XI
圖目錄 XIV
表目錄 XVII
第一章 緒論 1
1-1前言 1
1-2研究目的 2
第二章 文獻回顧與基礎理論 4
2-1轉爐石之簡介 4
2-1-1轉爐石來源 4
2-1-2轉爐石之基本特性 6
2-1-3轉爐石之應用 7
2-2重金屬廢水簡介 12
2-2-1重金屬廢水來源、危害性與管制標準 12
2-2-2重金屬廢水處理技術 14
2-2-3鉻離子之特性 20
2-2-4砷離子之特性 21
2-3基本吸附理論 22
2-3-1吸附理論 22
2-3-2等溫吸附理論 25
2-3-3動力吸附模式 32
2-3-4吸附反應自由能與反應熱 34
第三章 實驗方法 36
3-1實驗材料與藥品 36
3-2實驗儀器 37
3-2-1 X光繞射分析儀 37
3-2-2場發射掃描式電子顯微鏡與能量散佈光譜儀 38
3-2-3比表面積分析儀 40
3-2-4傅立葉轉化紅外線光譜儀 41
3-2-5感應耦合電漿發射光譜儀 42
3-3實驗流程 44
3-3-1轉爐石特性分析 44
3-3-2鉻離子吸附實驗 46
3-3-3砷離子吸附實驗 49
第四章 結果與討論 52
4-1轉爐石基本特性 52
4-1-1礦物相分析 52
4-1-2比表面積分析 54
4-1-3表面形貌與元素分析 56
4-1-4化學成分分析 58
4-2吸附實驗結果 60
4-2-1動力吸附實驗 60
4-2-2溫度效應實驗 66
4-2-3等溫吸附實驗 71
4-2-4熱力學參數 76
4-3鉻離子吸附後之產物分析 79
4-3-1礦物相分析 79
4-3-2表面形貌與表面元素分佈 81
4-3-3吸附後之官能基分析 83
4-4砷離子吸附後之產物分析 84
4-4-1礦物相分析 84
4-4-2表面形貌與表面元素分佈 86
4-4-3吸附後之官能基分析 88
4-5轉爐石對Cr6+與As5+之吸附機制 90
4-6文獻比較 92
4-6-1不同吸附劑對Cr6+之吸附效果比較 92
4-6-2不同吸附劑對As5+之吸附效果比較 93
4-6-3轉爐石對重金屬吸附之文獻比較 94
4-7實務應用與建議 98
第五章 結論 100
參考文獻 103
參考文獻 Al-Hosney, H. A. and Grassian, V. H., ‘Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: A transmission and ATR-FTIR study’ Physical Chemistry Chemical Physics, 7(6), 1266-1276, 2005.
Armenante, P. M., ‘Precipitation of Heavy Metals from Wastewaters’ New Jersey Institute of Technology.
Asenath-Smith, E., Lokuhewa, I. N., Misture, S. T. and Edwards, D. D., ‘p-Type thermoelectric properties of the oxygen-deficient perovskite Ca2Fe2O5 in the brownmillerite structure’ Journal of Solid State Chemistry, 183, 1670-1677, 2010.
Boss, C. B. and Fredeen, K. J., ‘Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry’ Perkin-Elmer, 1997.
Brady and Weil, R., ‘The Nature and Properties of Soils’ Pearson, Chapter 8, 2007.
Calvanese, G., Cioffi, R. and Santoro, L., ’Cement Stabilization of Tannery Sludge Using Quaternary Ammonium Salt Exchanged Bentonite as Pre-Solidification Adsorbent’ Environmental Technology, 23: 9, 1051-1062, 2002
Chakravarti, A. K., Chowdhury, S. B., Chakrabarty, S., Chakrabarty, T. and Mukherjee, D. C., ‘Liquid membrane multiple emulsion process of chromium(VI) separation from wastewaters’ Colloids and Surfaces A: Physicochemical and Engineering Aspects, 103, 59, 1995.
Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I.C., and Kim, K. S., ‘Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal’ ACS Nano, 4 (7), 3979–3986, 2010.
Chen, Q. Y., Tyrer, M., Hills, C. D., Yang, X. M., and Carey, P., ‘Immobilisation of heavy metal in cement-based solidification/stabilisation: A review’ Waste Management, 29, 390-403, 2009.
Dada, A.O., Olalekan, A.P., Olatunya, A.M. and DADA, O., ‘Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk’ Journal of Applied Chemistry, 3(1), 38-45, 2012.
Dahbi, S., Azzi, M. and Guardia, M., ‘Removal of hexavalent chromium from wastewaters by bone charcoal’ Fresenius' Journal of Analytical Chemistry, 363, 404, 1999.
Flytianos, K., Vondrias, E. and Tsechpenakis, A., ‘Removal of Cr(VI) from aqueous and wastewater sample by fly ash.’ J. Environ. Sci. Health, A32 (9-10), 2419, 1998.
Granados, M. L., Poves, M. D. Z., Alonso, D. M., Mariscal, R., Galisteo, F. C., Moreno-Tost, R., Santamaria, J., and Fierro, J. L. G., ‘Biodisel from Sunflower Oil by Using Activated Calcium Oxide’ Applied Catalysis B-Environmental, 73, 317-326, 2007.
Greenwood, N. N., Earnshaw, A., ‘Chemistry of the Elements’, Pergamon, New York, p. 1175, 1988.
Gu, Z.M., Deng, B.L. and Yang, J., ‘Synthesis and evaluation of iron-containing ordered mesoporous carbon (FeOMC) for arsenic adsorption’ Microporous and Mesoporous Materials, 102 (1–3), 265–273, 2007.
Guan, X. H., Wang, J. and Chusuei, C. C., ‘Removal of arsenic from water using granular ferric hydroxide: Macroscopic and microscopic studies’ Journal of Hazardous Materials, 156, 178-185, 2008.
Ho, Y. S. and McKay, G., ‘Pseudo-second order model for sorption processes’ Process Biochemistry, 34, 451-465, 1999.
Hu, J. S., Zhong, L. S., Song, W. G., and Wan, L. J., ‘Synthesis of Hierarchically Structured Metal Oxides and their Application in Heavy Metal Ion Removal’ Advanced Material, 20, 2977-2982, 2008.
Hung, C. P. and Wu, M. H., ‘The removal of chromium(VI) from dilute solution by activated carbon’ Water Research, 11, 673, 1977.
Ivan Carabante, ‘Arsenic (V) Adsorption on Iron Oxide: Implications for Soil Remediation and Water Purification’ Luleå University of Technology, ISBN 978-91-7439-485-6, 2012.
Kong, J. J., Yue, Q. Y., Sun, S. L., Gao, B. Y., Kan, Y. J., Li, Q. and Wang, Y., ‘Adsorption of Pb(II) from aqueous solution using keratin waste – hide waste: Equilibrium, kinetic and thermodynamic modeling studies’ Chemical Engineering Journal, 241, 393-400, 2014.
Kozlowski, C. A. and Walkowiak, W., ‘Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes’ Water Research, 36 (19), 4870, 2002.
Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe (On the theory of so-called adsorption of soluble substances). Kungliga Svenska Vetenskapsakademiens Handlingar, 24 (4), 1, 1898.
Li, J. S., Miao, X. Y., Hao, Y. X., Zhao, J. Y., Sun, X. Y. and Wang, L. J., ‘Synthesis, amino-functionalization of mesoporous silica and its adsorption of Cr(VI)’ Journal of Colloid and Interface Science, 318, 309-314, 2008.
Liu, Y., ‘Is the Free Energy Change of Adsorption Correctly Calculated?’ J. Chem. Eng. Data, 54, 1981-1985, 2009.
Luan, F. B., Xie, L., Shenga, J., Li, J., Zhou, Q. and Zhai, G. M., ‘Reduction of nitrobenzene by steel convert slag with Fe(II) system: The role of calcium in steel slag’ Journal of Hazardous Materials, 217-218, 416– 421, 2012.
Lunge, S., Singh, S. and Sinha, A., ‘Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal’ Journal of Magnetism and Magnetic Materials, 356, 21-31, 2014.
Luo, X.B., Wang,C. C., Luo, S. L., Dong, R. Z., Tu, X. M., and Zeng, G. S., ‘Adsorption of As(III) and As(V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites’ Chemical Engineering Journal, 187, 45–52, 2012.
Mamindy-Pajany, Y., Hurel, C., Marmier, N. and Rome´o, M., ‘Arsenic adsorption onto hematite and goethite’ C. R. Chimie, 12, 876-881, 2009.
Mandal, B. K., Kesarla, M., Vankayala, R., Mukherjee, A., Kumar, K. S., Reddy, P. S., Hegde, MS and Sreedhar, B. ‘Synthesis of zero valent iron nanoparticles and application to removal of arsenic(III) and arsenic(V) from water’, Journal of the Indian Chemical Society, 89 (9), 1215–1221, 2012.
Mohan, D., Singh, K. P. and Singh, V. K., ‘Removal of Hexavalent Chromium from Aqueous Solution Using Low-Cost Activated Carbons Derived from Agricultural Waste Materials and Activated Carbon Fabric Cloth’ Ind. Eng. Chem. Res., 44, 1027-1042, 2005.
Mostafaa, M.G., Chen, Y. H., Jean, J. S., Liub, C. C. and Lee, Y. C., ‘Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite’ Journal of Hazardous Materials, 187, 89-95, 2011.
Nadine M. Piatak, Michael B. Parsons, Robert R. Seal II, ‘Characteristics and environmental aspects of slag: A review’ Applied Geochemistry, ISSN 0883-2927, 2014.
Naiya, T. K., Singha, B and Das S. K., ‘FTIR Study for the Cr(VI) Removal from Aqueous Solution Using Rice Waste’ International Conference on Chemistry and Chemical Process, 10, 2011.
Orhan, Y. and Buyukgungor, H., ‘The removal of heavy metals by using agricultural wastes.’ Water Sci. Technol., 28 (2), 247, 1993.
Panday, K. K., Prasad, G. and Singh, V. N., ‘Removal of Cr(V1) from Aqueous Solutions by Adsorption on Fly Ash-Wollastonite’ Journal of Chemical Technology and Biotechnology, 34A, 367-374, 1984.
Payne, K. B. and Abdel-Fattah, T. M., ‘Adsorption of Arsenate and Arsenite by Iron-Treated Activated Carbon and Zeolites: Effects of pH, Temperature, and Ionic Strength’ Journal of Environmental Science and Health, 40, 723-749, 2005.
Pradhan, J., Das, S. N. and Thakur, R. S., ‘Adsorption of hexavalent chromium from aqueous solution by using activated red mud.’ J. Colloid Interface Sci., 217, 137, 1999.
Puertas, F., Palacios, M. and Vazquez, T., ‘Carbonation Process of Alkali-Activates Slag Mortars’ Journal of Material Science, 41, 3071-3082, 2006.
Rengaraj, S., Joo, C. K., Kim, Y. and Yi, J. ‘Kinetics of removal of chromium from water and electronic process wastewater by ion-exchange resins: 1200H, 1500H and IRN97H’ Journal of Hazardous Materials, 102 (2-3), 257, 2003.
Rivera-Utrilla, J., Toledo, I. B., Ferro-Garcia, M. A. and Moreno-Satilla, C., ‘Biosorption of Pb(II), Cd(II), and Cr(VI) on activated carbon from aqueous solutions.’ Carbon, 41, 323, 2003.
Saˇg, Y. and Kutsal, T., ‘Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus’, Biochemical Engineering Journal, 6, 145-151, 2000.
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T., ‘Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity’ Pure & Appl. Chem., 57(4), 603-619, 1985.
Tiravanti, G., Petruzzelli, D. and Passino, R., ‘Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery’ Water Science and Technology, 36, 197, 1997.
Wang, C., Luo, H. J., Zhang, Z. L., Wu, Y., Zhang, J. and Chen, S. W., ‘Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites’ Journal of Hazardous Materials, 268, 124-131, 2014.
Wang, S. B., Ang, H.M. and Tadé, M.O., ‘Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes’ Chemosphere, 72, 1621-1635, 2008
Weckhuysen, B. M., Wachs, I. E., and Schoonheydt, R. A., ‘Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides’ Chem. Rev., 96, 3327-3349, 1996.
Xu, H., Allard, B., Grimvall, A., ‘Effects of acidification and natural organic materials on the mobility of arsenic in the environment’, Water Air and Soil Poll., 57-58, 269-278, 1991.
Xue, Y. J., Hou, H. B. and Zhu, S. J., ’ Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag’ Journal of Hazardous Materials, 162, 391-401, 2009.
Xue, Y. J., Wu, S. P., Hou, H. B. and Zhu, S. J., ‘Experimental Investigation of Basic Oxygen Furnace Slag Used as Aggregate in Asphalt Mixture’, Journal of Hazardous Materials, 138, 261-268, 2006.
Yan, J., Moreno, L., and Neretnieks, I., ‘The long-trem acid neutralizing capacity of steel slag’ Waste Management, 20, 217-223, 2000.
Zhou, X., Korenaga, T., Takahashi, T., Moriwake, T. and Shinoda, S., ‘A process monitoring/controlling system for the treatment of wastewater containing chromium(VI)’ Water Research, 27, 1049, 1993.
Zhu, H. J., Jia, Y. F., Wu, X. and Wang, H., ‘Removal of arsenic from water by supported nano zero-valent iron on activated carbon’, Journal of Hazardous Materials, 172 (2–3), 1591–1596, 2009.
Zouboulis, A.I. and Katsoyiannis, I.A., ‘Recent advances in the bioremediation of arsenic-contaminated groundwaters’, Environment International, 31 (2), 213–219, 2005.
王紹文、姜鳳有,重金屬廢水治理技術,冶金工業出版社,1993。
中國鋼鐵股份有限公司,爐石利用推廣手冊,2003。
行政院公共工程委員會,公共工程高爐石混凝土使用手冊,行政院公共工程委員會,2001。
近藤精一、石川達雄、安部郁夫,李國希 譯,吸附科學,化學工業出版社,2001。
谷海紅、李忠偉、愈強,鋼渣對酸性重金屬汙染土壤的修復研究進展,中國農學通報,第28卷,第20期,第243~239頁,2012。
柯明賢、呂雅湘、吳孟樺、林昌琰、吳秉輯,鋼鐵工業爐渣作為填築材料之工程特性與環境特性研究,鋼鐵工業爐渣資源化再利用實務研討會論文集,第6-1~6-23頁,2002。
陳力俊,材料電子顯微鏡,財團法人國家實驗研究院儀器科技研究中心,1994。
陳有志,產業減廢與資源化,全威圖書有限公司,2000
郭育宗,轉爐石去除河水中磷之探討,國立屏東科技大學,環境工程與科學系碩士論文,2009。
黃煥彩、林平全、張東源,中鋼轉爐石資源化處理及利用情形,鋼鐵工業爐渣資源化再利用實務研討會,第1-1~1-23頁,2002。
黃任偉,粒狀氫氧化鐵吸附地下水中砷之研究,國立成功大學,環境工程系碩士論文,2002。
張高橋,鈣系爐渣封存二氧化碳行為之研究,國立成功大學,環境工程學系碩士論文,2008。
張漢昌、黃世梁,廢水汙染與防治,新文京開發出版有限公司,2005。
經濟部,重金屬土壤及地下水污染預防與整治技術手冊,經濟部工業局,2006。
劉精今、李小明、楊騏,爐渣的吸附性能及在廢水處理中的應用,工業用水與廢水,第34卷,第1期,2003。
詹詠翔,養生條件對轉爐石溶出行為之影響,國立成功大學,環境工程學系碩士論文,2009。
楊貫一,爐石資源化-中鋼公司爐石應用的過去與未來,技術與訓練,第17卷,第一期,第31-46頁,1992。
楊貫一,爐石資源化-水淬高爐石再利用作為水泥混凝土材料,技術與訓練,第22卷,第3期,第118~132頁,1997。
蘇同新,煉鋼燒結與轉爐石淋溶過程中磷賦存狀態之探討,國立成功大學,地球科學系碩士論文,2008。
蘇亮誌,鐵氧化物吸附與鐵養磁體法處理重金屬溶液之研究,國立成功大學,化學工程系碩士論文,2004。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw