進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508201418371800
論文名稱(中文) 以奈米修飾碳材對多巴胺、尿酸與抗壞血酸同時偵測之研究
論文名稱(英文) The simultaneous detection of dopamine, uric acid and ascorbic acid with modified carbon nanomaterials
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 池易楷
研究生(英文) Yi-Kai Chih
電子信箱 chihyk1981@hotmail.com
學號 N38941054
學位類別 博士
語文別 中文
論文頁數 141頁
口試委員 召集委員-周澤川
指導教授-楊明長
口試委員-何國川
口試委員-陳生明
口試委員-許梅捐
口試委員-杜景順
口試委員-林宗榮
中文關鍵字 奈米碳材  電化學感測器  多巴胺  尿酸  抗壞血酸 
英文關鍵字 Carbon nanomaterial  Eelectrochemical sensor  Dopamine  Uric acid  Ascorbic acid 
學科別分類
中文摘要 多巴胺、尿酸與抗壞血酸是人體內重要生物分子,多數的疾病都與這些生物分子濃度有關。缺少多巴胺會導致精神疾病或是帕金森氏症;高濃度的尿酸可導致高尿酸血症,痛風等多種疾病;抗壞血酸是一種強抗氧化劑,可以有效對抗超氧離子自由基,羥基自由基。抗壞血酸在生物體中的含量可以防止癌症,糖尿病和肝臟疾病。在血液或尿液中,這些物質濃度可以作為一種有效的早期預警信號,如:中樞神經系統或腎臟等疾病,因此對多巴胺、尿酸和抗壞血酸的濃度的監測是很重要。
本研究藉由奈米碳材、2,2'-聯氮雙(3-乙基苯並噻唑啉-6-磺酸) (ABTS)與Ag/Ag2S製備三種的修飾電極應用於磷酸鹽緩衝溶液中 (pH 7.0),同時偵測多巴胺、尿酸與抗壞血酸。
第一部分,ABTS修飾奈米碳管電極用於含有抗壞血酸的磷酸鹽緩衝溶液,同時偵測多巴胺與尿酸。多巴胺與尿酸分別在碳管表面的活性座上氧化,形成多巴胺與尿酸氧化物,且電子再由ABTS電子媒與碳管導電傳遞到ITO電極表面。ABTS修飾奈米碳管電極與奈米碳管電極在含有100 M 抗壞血酸中,對多巴胺 (0 - 20 M) 的感測靈敏度會從0.60提高到1.33 A/M cm-2,線性濃度範圍0.90-10 M 變為1.87-20 M;對於尿酸 (0 - 600 M) 的感測靈敏度會從0.030提高到0.078 A/M cm-2,線性濃度範圍2.16-240 M 變為3.07-400 M。
第二部分,Ag/Ag2S粒子應用於電化學感測系統。Ag/Ag2S修飾奈米碳管電極是先將Ag/Ag2S粒子與奈米碳管分散於Nafion溶液,再塗佈在裸電極上所形成。多巴胺與抗壞血酸的電化學行為藉由脈衝微分法進行量測。微分脈衝法量測結果,顯示多巴胺與抗壞血酸的氧化特徵峰具有良好的分離,即有良好的選擇性。單純只有奈米碳管的修飾電極對抗壞血酸並不具有偵測能力。Ag/Ag2S對多巴胺與抗壞血酸是具有電化學催化活性,且在修飾電極表面上提高電子轉移的能力,奈米碳管在本研究也可提高對多巴胺的感測能力。Ag/Ag2S修飾奈米碳管電極對多巴胺的感測靈敏度從0.63提高為1.00 A/M cm-2;抗壞血酸則為0.020 A/M cm-2,偵測下現為250 - 2000 A。
最後部分為氧化石墨烯與聚乙烯吡咯烷酮,藉由快速升溫熱處理,製備氮原子摻入氧化石墨烯 (r-NGO),再與Nafion固定於玻璃碳電極上 (GCE),乾燥形成r-NGO修飾電極。r-NGO修飾電極用於同時檢測多巴胺、尿酸與抗壞血酸。氮碳鍵提高修飾電極表面上的電子轉移,石墨烯有氮原子形成的結構缺陷對多巴胺、尿酸與抗壞血酸有較高的電化學催化活性。r-NGO修飾電極對同時偵測多巴胺的靈敏度為3.64 A/M cm-2,線性濃度範圍是0.4-10 M,尿酸的靈敏度為0.250 A/M cm-2,線性濃度範圍為6.0-180 M;對抗壞血酸的靈敏度為0.032 A/M cm-2,線性濃度範圍為180 -1000 M。
根據三個部分,r-NGO修飾電極對尿酸具有最高的靈敏度,對多巴胺具有最低檢測濃度。在r-NGO修飾電極的線性範圍對於尿液中的多巴胺、尿酸與抗壞血酸是較為適用。這些結果顯示,r-NGO修飾電極在電化學感測和其他電催化應用上是具有未來發展潛力。
英文摘要 The three kinds of modified electrodes were prepared with carbon nano materials, 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and silver/silver sulfide for simultaneous determination of dopamine (DA), uric acid (UA) and ascorbic acid (AA). An ABTS-immobilized carbon nanotube (CNT) electrode was used to simultaneously detect DA and UA in the presence of ascorbic acid. DA and UA are oxidized to DAox and UAox, respectively, at the active sites of the CNT surface, and the released electrons are transported to the ITO electrode through the ABTS mediator. Ag/Ag2S was applied on an electrochemical system. The Ag/Ag2S nanoparticles were dispersed with CNT in Nafion to be an Ag/Ag2S-immobilized CNT electrode. Ag/Ag2S worked as an electrocatalyst for DA and AA, and promoted electron transfer on the modified electrode surface. Nitrogen doped graphene oxide (r-NGO) was prepared from graphite oxide and polyvinylpyrrolidone (PVP) mixture by rapid thermal treatment. The r-NGO modified electrode was applied to simultaneously determine the concentrations of DA, UA and AA. The result shows that the nitrogen-carbon bonds promoted electron transfer on the modified electrode surface and the r-NGO structural defect showed highly electrocatalytic activity towards the oxidation of DA, UA and AA.
論文目次 摘 要 I
Abstract III
致 謝 VII
目 錄 VIII
圖目錄 XII
表目錄 XXI
Scheme XXII
第一章 緒論 1
1-1 前言 1
1-2 多巴胺、尿酸、尿素相關文獻 1
1-2-1 多巴胺 1
1-2-2 尿素 2
1-2-3 抗壞血酸 4
1-2-4 文獻回顧 5
1-3 關於多巴胺、尿酸與抗壞血酸電化學反應行為 5
1-4 生物化學感測器簡介 6
1-5 生物化學感測器設計 7
1-5-1 電化學生物感測器 8
1-5-2 半導體離子感測器─離子選擇性場效電晶體 9
1-5-3 光纖生物感測器 9
1-5-4 壓電晶體生物感測器 9
1-6 電化學原理 10
1-7 電化學感測器感測技術 11
1-7-1 電導式 11
1-7-2 電流法 11
1-7-3 電位法 11
1-7-4 伏安法 12
1-7-5 電化學阻抗光譜法 15
1-8 電化學感測電極表面修飾方法 20
1-8-1 物理吸附法 20
1-8-2 嵌入法 20
1-8-3 化學鍵結法 21
1-9 電化學感測電擊修飾材料 22
1-9-1 有機高分子 23
1-9-2 離子交換薄膜 23
1-9-3 奈米粒子 23
1-9-3-1 碳黑與多孔性碳材 23
1-9-3-2 奈米碳管 24
1-9-3-3 石墨烯 25
1-9-4 電子媒傳遞物 28
1-9-5 酵素 28
1-10 研究動機 28

第二章 實驗藥品及步驟 30
2-1 實驗藥品與儀器 30
2-2 ITO裸電極清洗與工作電極面積標定 31
2-3 ABTS修飾奈米碳電極製備 31
2-4 以Ag/Ag2S修飾奈米碳管製備感測器 33
2-5 以氮原子摻入氧化石墨烯修飾碳材製備感測器 36
2-6 材料物性分析 39
2-7 電化學分析 40
2-8 實際樣品的分析 43
2-9 Recovery的分析 44

第三章 ABTS修飾碳管電極應用於多巴胺與尿酸感測 46
3-1 修飾電極特性分析 46
3-2 修飾電極交流阻抗分析 48
3-3 多巴胺、尿酸與ABTS於修飾電極的電化學行為 49
3-4 修飾電極在不同pH下的電化學行為 51
3-5 ABTS用量對多巴胺與尿酸的感測影響 53
3-6 奈米碳管使用量對多巴胺與尿酸的感測影響 54
3-7 修飾電極反應機構 55
3-8 DA與UA受抗壞血酸存在的影響 56
3-9 修飾電極穩定測試 62
3-10 修飾電極在血清中之感測 63

第四章 Ag/Ag2S修飾碳電極偵測多巴胺與抗壞血酸 70
4-1 Ag/Ag2S粒子特性分析 70
4-2 多巴胺與抗壞血酸於修飾電極的電化學行為 72
4-3 修飾電極在不同pH下的電化學行為 77
4-4 修飾電極交流阻抗分析 78
4-5 修飾電極反應機構 80
4-6 巴胺與尿酸受抗壞血酸存在的影響 81
4-7 修飾電極穩定測試 88

第五章 快速熱處理之氮原子摻入氧化石墨烯應用於多巴胺、尿酸與抗壞血酸感測 91
5-1 修飾電極特性分析 91
5-2 X光光電子能譜分析 93
5-3 多巴胺、尿酸與抗壞血酸在不同修飾電極之電化學行為 95
5-4 r-NGO漿料用量之電化學感測分析 96
5-5 待測物在不同溫度下的感測電化學行為 98
5-6 修飾電極的交流阻抗分析 100
5-7 多巴胺、尿酸與抗壞血酸在不同掃描速率的循環伏安法分析 102
5-8 多巴胺、尿酸與抗壞血的感測能力分析 103
5-9 修飾電極在血清中的電化學分析 112
5-10 修飾電極的電化學感測機制 113
第六章 綜合討論 115
第七章 結論 117
參考文獻 119
簡 歷 128
附 錄 129

參考文獻 1. Kahn, A. M.; Dolson, G. M.; Hise, M. K.; Bennett, S. C.; Weinman, E. J. Parathyroid hormone and dibutyryl cAMP inhibit Na+/H+ exchange in renal brush border vesicles. Am. J. Physiol. 1985, 248, F212-8.
2. Loeb, J. N. The influence of temperature on the solubility of monosodium urate. Arthritis Rheum. 1972, 15, 189-192.
3. 鄭睿智. 2005, 以高效能液相層析法分析L-ascorbic acid 與Isoascorbic acid, 國立台灣海洋大學食品科學系碩士學位論文.
4. U. Moser, A. B. Vitamin C. In: Handbook of Vitamins, 2nd ed. L. Machlin, Marcel Dekker, New York 1991, 195.
5. Emadi-Konjin, P.; Verjee, Z.; Levin, A. V.; Adeli, K. Measurement of intracellular vitamin C levels in human lymphocytes by reverse phase high performance liquid chromatography (HPLC). Clin. Biochem. 2005, 38, 450-456.
6. Lowenstein, J. M. Comparative Analyses for Ascorbic Acid by the 2,4-Dinitrophenylhydrazine Method with the Coupling Reaction at Different Temperatures: a Procedure for Determining Specificity. The Journal of Biological Chemistry 1961, 236, 1611-1613.
7. Perez-Ruiz, T.; Martinez-Lozano, C.; Tomas, V.; Fenol, J. Fluorimetric determination of total ascorbic acid by a stopped-flow mixing technique. Analyst 2001, 126, 1436-1439.
8. 何照范,張迪清. 2003, 保健食品化學及其檢測技測, 文光圖書有限公司.
9. Farajzadeh, M. A.; Nagizadeh, S. A Simple and Reliable Spectrophotometric Method for the Determination of Ascorbic Acid in Pharmaceutical Preparations. J. Anal. Chem. 2003, 58, 927-932.
10. 曾豐年. 2003, 利用火焰式原子吸收光譜儀以校正曲線法及標準添加法檢測市售五種礦物性中藥中鉛、鎘、銅及鎳重金屬含量, 朝陽科技大學應用化學系.
11. Zhao, H.; Zhang, Y.; Yuan, Z. Study on the electrochemical behavior of dopamine with poly(sulfosalicylic acid) modified glassy carbon electrode. Anal. Chim. Acta 2001, 441, 117-122.
12. Jo, S.; Jeong, H.; Bae, S. R.; Jeon, S. Modified platinum electrode with phytic acid and single-walled carbon nanotube: Application to the selective determination of dopamine in the presence of ascorbic and uric acids. Microchem. J. 2008, 88, 1-6.
13. Shankaran, D. R.; Uehara, N.; Kato, T. Sol–gel derived metal dispersed ceramic–graphite composite electrode for amperometric determination of dopamine. Anal. Chim. Acta 2003, 478, 321-327.
14. Atta, N. F.; Galal, A.; Ahmed, R. A. Poly(3,4-ethylene-dioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate. Bioelectrochemistry 2011, 80, 132-41.
15. Zare, H. R.; Nasirizadeh, N. Simultaneous determination of ascorbic acid, adrenaline and uric acid at a hematoxylin multi-wall carbon nanotube modified glassy carbon electrode. Sensors Actuators B: Chem. 2010, 143, 666-672.
16. Ndamanisha, J. C.; Guo, L. Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid-modified electrode. Biosens. Bioelectron. 2008, 23, 1680-5.
17. Rodríguez, M. C.; Sandoval, J.; Galicia, L.; Gutiérrez, S.; Rivas, G. A. Highly selective determination of uric acid in the presence of ascorbic acid at glassy carbon electrodes modified with carbon nanotubes dispersed in polylysine. Sensors Actuators B: Chem. 2008, 134, 559-565.
18. Nalini, B.; Sriman Narayanan, S. Amperometric determination of ascorbic acid based on electrocatalytic oxidation using a ruthenium(III) diphenyldithiocarbamate-modified carbon paste electrode. Anal. Chim. Acta 2000, 405, 93-97.
19. Zhang, R.; Liu, S.; Wang, L.; Yang, G. Electroanalysis of ascorbic acid using poly(bromocresol purple) film modified glassy carbon electrode. Measurement 2013, 46, 1089-1093.
20. Hosseinzadeh, R.; Sabzi, R. E.; Ghasemlu, K. Effect of cetyltrimethyl ammonium bromide (CTAB) in determination of dopamine and ascorbic acid using carbon paste electrode modified with tin hexacyanoferrate. Colloids and surfaces. B, Biointerfaces 2009, 68, 213-7.
21. Ghica, M. E.; Wintersteller, Y.; Brett, C. A. Poly(brilliant green)/carbon nanotube-modified carbon film electrodes and application as sensors. J. Solid State Electrochem. 2013, 17, 1571-1580.
22. Malem, F.; Mandler, D. Self-assembled monolayers in electroanalytical chemistry: application of omega-mercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid. Anal. Chem. 1993, 65, 37-41.
23. Zhao, Y.; Gao, Y.; Zhan, D.; Liu, H.; Zhao, Q.; Kou, Y.; Shao, Y.; Li, M.; Zhuang, Q.; Zhu, Z. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta 2005, 66, 51-57.
24. Kamyabi, M. A.; Shafiee, M. A. Electrocatalytic oxidation of dopamine, ascorbic acid and uric acid at poly2,6diaminopyridine on the surface of carbon nanotubes/gc electrodes. Journal of the Brazilian Chemical Society 2012, 23, 593-601.
25. Poghossian, A.; Yoshinobu, T.; Simonis, A.; Ecken, H.; Lüth, H.; Schöning, M. J. Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS? Sensors Actuators B: Chem. 2001, 78, 237-242.
26. Poghossian, A.; Schöning, M. J.; Schroth, P.; Simonis, A.; Lüth, H. An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime. Sensors Actuators B: Chem. 2001, 76, 519-526.
27. A. J. Bard, L. R. F. 1980, Electrochemical methods fundamentals and applications, John Wiley and Sons, Inc.
28. Kissinger, P. T. H., W. R. 1996, Laboratory Techniques in Electroanalytical Chemistry, 2nd Ed.; Marcel Dekker,Inc.
29. Park, S. M. Y., J.S. . Peer Reviewed: Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements. Anal. Chem. 2003, 75, 455A-461A.
30. C. M. Brett, A. m. o. b. Electrochemistry-Principles, Methods, and Applications. Oxford, New York 1993, 405.
31. Castillo-Ortega, M. M.; Rodriguez, D. E.; Encinas, J. C.; Plascencia, M.; Méndez-Velarde, F. A.; Olayo, R. Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline–poly(n-butyl methacrylate) composites. Sensors and Actuators B: Chem. 2002, 85, 19-25.
32. Uchiyama, S.; Sakamoto, H. Immobilization of uricase to gas diffusion carbon felt by electropolymerization of aniline and its application as an enzyme reactor for uric acid sensor. Talanta 1997, 44, 1435-1439.
33. Wang, J.; Chen, L.; Hocevar, S. B.; Ogorevc, B. One-step electropolymeric co-immobilization of glucose oxidase and heparin for amperometric biosensing of glucose. Analyst 2000, 125, 1431-1434.
34. Magalhaes, J. M.; Machado, A. A. Urea potentiometric biosensor based on urease immobilized on chitosan membranes. Talanta 1998, 47, 183-91.
35. Kranz, C.; Wohlschläger, H.; Schmidt, H.L.; Schuhmann, W. Controlled Electrochemical Preparation of Amperometric Biosensors Based on Conducting Polymer Multilayers. Electroanalysis 1998, 10, 546-552.
36. Nakaminami, T.; Ito, S.i.; Kuwabata, S.; Yoneyama, H. Uricase-Catalyzed Oxidation of Uric Acid Using an Artificial Electron Acceptor and Fabrication of Amperometric Uric Acid Sensors with Use of a Redox Ladder Polymer. Anal. Chem. 1999, 71, 1928-1934.
37. Nakaminami, T.; Ito, S.i.; Kuwabata, S.; Yoneyama, H. A biomimetic phospholipid/alkanethiolate bilayer immobilizing uricase and an electron mediator on an Au electrode for amperometric determination of uric acid. Anal. Chem. 1999, 71, 4278-4283.
38. Thomas, J. H.; Drake, J. M.; Paddock, J. R.; Conklin, S.; Johnson, J.; Seliskar, C. J.; Halsall, H. B.; Heineman, W. R. Characterization of ABTS at a Polymer-Modified Electrode. Electroanalysis 2004, 16, 547-555.
39. Farneth, W. E.; Diner, B. A.; Gierke, T. D.; D´Amore, M. B. Current densities from electrocatalytic oxygen reduction in laccase/ABTS solutions. J. Electroanal. Chem. 2005, 581, 190-196.
40. Zen, J. M.; Hsu, C. T. A selective voltammetric method for uric acid detection at Nafion(R)-coated carbon paste electrodes. Talanta 1998, 46, 1363-1369.
41. Zen, J.M. Selective voltammetric method for uric acid detection using pre-anodized Nafion-coated glassy carbon electrodes. Analyst 1998, 123, 1345-1350.
42. Ni, J. A. ; Ju, H. X.; Chen, H. Y.; Leech, D. Amperometric determination of epinephrine with an osmium complex and Nafion double-layer membrane modified electrode. Anal. Chim. Acta 1999, 378, 151-157.
43. Zheng, X.; Zhou, X.; Ji, X.; Lin, R.; Lin, W. Simultaneous determination of ascorbic acid, dopamine and uric acid using poly(4-aminobutyric acid) modified glassy carbon electrode. Sensors and Actuators B: Chem. 2013, 178, 359-365.
44. Zhang, L.; Yuan, W. J.; Hou, B. Q. Nano-Cu/PSA III modified glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. J. Electroanal. Chem. 2013, 689, 135-141.
45. Hou, S.; Zheng, N.; Feng, H.; Li, X.; Yuan, Z. Determination of dopamine in the presence of ascorbic acid using poly(3,5-dihydroxy benzoic acid) film modified electrode. Anal. Biochem. 2008, 381, 179-84.
46. Zeng, Y. L.; Li, C. X.; Tang, C. R.; Zhang, X. B.; Shen, G. L.; Yu, R. Q. The electrochemical properties of Co(TPP), tetraphenylborate modified glassy carbon electrode: Application to dopamine and uric acid analysis. Electroanalysis 2006, 18, 440-448.
47. Adekunle, A. S.; Ayenimo, J. G.; Fang, X.-Y.; Doherty, W. O.; Arotiba, O. A.; Mamba, B. B. Electrochemical response and impedimetric behaviour of dopamine and epinephrine at platinum electrode modified with carbon nanotubes-gold nanocomposite. International Journal of Electrochemical Science 2011, 6, 2826-2844.
48. Zhou, O.; Fleming, R. M.; Murphy, D. W.; Chen, C. H.; Haddon, R. C.; Ramirez, A. P.; Glarum, S. H. Defects in Carbon Nanostructures. Science 1994, 263, 1744-1747.
49. Amelinckx, S.; Bernaerts, D.; Zhang, X. B.; Van Tendeloo, G.; Van Landuyt, J. A structure model and growth mechanism for multishell carbon nanotubes. Science 1995, 267, 1334-1338.
50. Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54-56.
51. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. RvMP 2009, 81, 109-162.
52. Raghubanshi, H. H., M. Sterlin Leo; Srivastava, O. N. Effect of Ambient Gas Pressure on the Thermal Exfoliation of Graphite Oxide: Tuning the Number of Graphene Sheets. 2013.
53. Su, C. Y.; Xu, Y.; Zhang, W.; Zhao, J.; Liu, A.; Tang, X.; Tsai, C. H.; Huang, Y.; Li, L. J. Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors. ACS nano 2010, 4, 5285-92.
54. Cao, J.; Qi, G.Q.; Ke, K.; Luo, Y.; Yang, W.; Xie, B.H.; Yang, M.B. Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction. JMatS 2012, 47, 5097-5105.
55. Hudson, M. J.; Peckett, J. W.; Sibley, C. S.; Harris, P. J. F. Pyrolysis of Polymer-Derived Carbons in the Formation of Graphitizing Carbons and Nanoparticles of Zirconia. Industrial and Engineering Chemistry Research 2008, 47, 2605-2611.
56. Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5-25.
57. Wajid, A. S.; Das, S.; Irin, F.; Ahmed, H. S. T.; Shelburne, J. L.; Parviz, D.; Fullerton, R. J.; Jankowski, A. F.; Hedden, R. C.; Green, M. J. Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 2012, 50, 526-534.
58. Song, C.; Wu, D.; Zhang, F.; Liu, P.; Lu, Q.; Feng, X. Gemini surfactant assisted synthesis of two-dimensional metal nanoparticles/graphene composites. Chem. Commun. 2012, 48, 2119-2121.
59. Vadukumpully, S.; Paul, J.; Valiyaveettil, S. Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 2009, 47, 3288-3294.
60. Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Steriotis, T. A.; Stubos, A. K.; Trapalis, C. Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun. 2009, 149, 2172-2176.
61. Wang, J.; Zhou, T.; Deng, H.; Chen, F.; Wang, K.; Zhang, Q.; Fu, Q. An environmentally friendly and fast approach to prepare reduced graphite oxide with water and organic solvents solubility. Colloids and Surfaces. B, Biointerfaces 2013, 101, 171-176.
62. Wood, K. N.; O'Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy and Environmental Science 2014, 7, 1212-1249.
63. Hsu, R. 2012,Nanostructured Non-Precious Metal Catalysts for Polymer Electrolyte Fuel Cell, University of Waterloo.
64. Peng, H.; Mo, Z.; Liao, S.; Liang, H.; Yang, L.; Luo, F.; Song, H.; Zhong, Y.; Zhang, B. High performance Fe- and N-doped carbon catalyst with graphene structure for oxygen reduction. Sci. Rep. 2013, 3, 1-7.
65. Ferraria, A. M.; Lopes da Silva, J. D.; Botelho do Rego, A. M. XPS studies of directly fluorinated HDPE: problems and solutions. Polymer 2003, 44, 7241-7249.
66. Lai, L.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy and Environmental Science 2012, 5, 7936-7942.
67. Muraoka, M.; Tomonaga, H.; Nagai, M. Ammonia-treated brown coal and its activity for oxygen reduction reaction in polymer electrolyte fuel cell. Fuel 2012, 97, 211-218.
68. Liu, Y.; Dong, X.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283-2307.
69. Kuila, T.; Bose, S.; Khanra, P.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Recent advances in graphene-based biosensors. Biosensors Bioelectron. 2011, 26, 4637-4648.
70. Sandeep Kumar Vashist, A. G. V. Advances in Graphene-Based Sensors and Devices. Journal of Nanomedicine and Nanotechnology 2012, 4, 2157-7439.
71. Barton, S. C.; Gallaway, J.; Atanassov, P. Enzymatic Biofuel Cells for Implantable and Microscale Devices. Chem. Rev. 2004, 104, 4867-4886.
72. Karnicka, K.; Miecznikowski, K.; Kowalewska, B.; Skunik, M.; Opallo, M.; Rogalski, J.; Schuhmann, W.; Kulesza, P. J. ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen. Anal. Chem. 2008, 80, 7643-7648.
73. Metelitza, D. I.; Eryomin, A. N.; Sviridov, D. O.; Kamyshnikov, V. S. Initiation and inhibition of free radical processes in H2O2-metmyoglobin (methemoglobin)-2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) systems. Biochemistry (Mosc). 2001, 66, 505-514.
74. Li, M.; Deng, C.; Xie, Q.; Yang, Y.; Yao, S. Electrochemical quartz crystal impedance study on immobilization of glucose oxidase in a polymer grown from dopamine oxidation at an Au electrode for glucose sensing. Electrochim. Acta 2006, 51, 5478-5486.
75. Das, M.; Goswami, P. Direct electrochemistry of alcohol oxidase using multiwalled carbon nanotube as electroactive matrix for biosensor application. Bioelectrochemistry 2013, 89, 19-25.
76. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856-5857.
77. Zhang, Y.; Pan, Y.; Su, S.; Zhang, L.; Li, S.; Shao, M. A novel functionalized single-wall Carbon nanotube modified electrode and Its application in determination of dopamine and uric acid in the Presence of High Concentrations of Ascorbic Acid. Electroanalysis 2007, 19, 1695-1701.
78. Periasamy, A. P.; Chang, Y. J.; Chen, S. M. Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 2011, 80, 114-120.
79. Bagheri, A.; Hosseini, H. Electrochemistry of raloxifene on glassy carbon electrode and its determination in pharmaceutical formulations and human plasma. Bioelectrochemistry 2012, 88, 164-170.
80. Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamentals and Applications. John Wiley and Sons, Inc. 1980, 423-424.
81. Hočevar, S. B.; Wang, J.; Deo, R. P.; Musameh, M.; Ogorevc, B. i. Carbon nanotube modified microelectrode for enhanced voltammetric detection of dopamine in the presence of ascorbate. Electroanalysis 2005, 17, 417-422.
82. Ghita, M.; Arrigan, D. W. M. Dopamine voltammetry at overoxidised polyindole electrodes. Electrochim. Acta 2004, 49, 4743-4751.
83. Zen, J. M.; Jou, J. J.; Ilangovan, G. Selective voltammetric method for uric acid detection using pre-anodized Nafion-coated glassy carbon electrodes. Ana 1998, 123, 1345-1350.
84. Quan, D.; Kim, Y.; Shin, W. Characterization of an amperometric laccase electrode covalently immobilized on platinum surface. J. Electroanal. Chem. 2004, 561, 181-189.
85. Mo, J. W.; Ogorevc, B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber. Anal. Chem. 2001, 73, 1196-1202.
86. Chen, P. Y.; Nien, P. C.; Hu, C. W.; Ho, K. C. Detection of uric acid based on multi-walled carbon nanotubes polymerized with a layer of molecularly imprinted PMAA. Sensors and Actuators B: Chem. 2010, 146, 466-471.
87. Majidi, M.; Baj, R.; Naseri, A. Carbon nanotube-ionic liquid nanocomposite modified carbon-ceramic electrode for determination of dopamine in real samples. cent.eur.j.chem. 2013, 11, 1172-1186.
88. Aguilar, R.; Dávila, M. M.; Elizalde, M. P.; Mattusch, J.; Wennrich, R. Capability of a carbon–polyvinylchloride composite electrode for the detection of dopamine, ascorbic acid and uric acid. Electrochim. Acta 2004, 49, 851-859.
89. Zheng, D.; Ye, J.; Zhou, L.; Zhang, Y.; Yu, C. Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film. J. Electroanal. Chem. 2009, 625, 82-87.
90. Rueda, M.; Aldaz, A.; Sanchez-Burgos, F. Oxidation of L-ascorbic acid on a gold electrode. Electrochim. Acta 1978, 23, 419-424.
91. Lyons, M. E. G.; Breen, W.; Cassidy, J. Ascorbic acid oxidation at polypyrrole-coated electrodes. J. Chem. Soc., Faraday Trans. 1991, 87, 115-123.
92. Hu, I. F.; Kuwana, T. Oxidative mechanism of ascorbic acid at glassy carbon electrodes. Anal. Chem. 1986, 58, 3235-3239.
93. Ambrosi, A.; Morrin, A.; Smyth, M. R.; Killard, A. J. The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Anal. Chim. Acta 2008, 609, 37-43.
94. Gulens, J.; Shoesmith, D. W. Evidence for Metallic Ag at the Surface of Ag / Ag2 S  Electrodes. J. Electrochem. Soc. 1981, 128, 811-816.
95. Roy, P. R.; Okajima, T.; Ohsaka, T. Simultaneous electroanalysis of dopamine and ascorbic acid using poly(N,N-dimethylaniline)-modified electrodes. Bioelectrochemistry 2003, 59, 11-19.
96. Zhang, R.; Jin, G. D.; Chen, D.; Hu, X. Y. Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode. Sensors and Actuators B: Chem. 2009, 138, 174-181.
97. Wang, J.; Zeng, B.; Fang, C.; Zhou, X. The influence of surfactants on the electron-transfer reaction at self-assembled thiol monolayers modifying a gold electrode. J. Electroanal. Chem. 2000, 484, 88-92.
98. Raj, C. R.; Tokuda, K.; Ohsaka, T. Electroanalytical applications of cationic self-assembled monolayers: square-wave voltammetric determination of dopamine and ascorbate. Bioelectrochemistry 2001, 53, 183-191.
99. Zare, H. R.; Nasirizadeh, N.; Mazloum Ardakani, M. Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid. J. Electroanal. Chem. 2005, 577, 25-33.
100. Wang, H. S.; Li, T. H.; Jia, W. L.; Xu, H. Y. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Biosens. Bioelectron. 2006, 22, 664-9.
101. Kong, J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622-625.
102. Tsierkezos, N. G.; Wetzold, N.; Ritter, U.; Hübler, A. C. Analysis of dopamine on printed polymer thin film consisting of multi-walled carbon nanotubes. Monatsh Chem 2013, 144, 581-588.
103. Selvaraju, T.; Ramaraj, R. Simultaneous determination of dopamine and serotonin in the presence of ascorbic acid and uric acid at poly(o-phenylenediamine) modified electrode. J. Appl. Electrochem. 2003, 33, 759-762.
104. Li, C.Y.; Cai, Y.J.; Yang, C.H.; Wu, C.H.; Wei, Y.; Wen, T.C.; Wang, T.L.; Shieh, Y.T.; Lin, W.C.; Chen, W.J. Highly sensitive and selective electrochemical determination of dopamine and ascorbic acid at Ag/Ag2S modified electrode. Electrochim. Acta 2011, 56, 1955-1959.
105. Noroozifar, M.; Khorasani-Motlagh, M.; Taheri, A. Preparation of silver hexacyanoferrate nanoparticles and its application for the simultaneous determination of ascorbic acid, dopamine and uric acid. Talanta 2010, 80, 1657-1664.
106. Cai, D.; Wang, S.; Lian, P.; Zhu, X.; Li, D.; Yang, W.; Wang, H. Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochim. Acta 2013, 90, 492-497.
107. Lv R, L. Q., Botello-Méndez AR, Hayashi T, Wang B, Berkdemir A, Hao Q, Elías AL, Cruz-Silva R, Gutiérrez HR, Kim YA, Muramatsu H, Zhu J, Endo M, Terrones H, Charlier JC, Pan M, Terrones M. Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci. Rep. Cetacean Res. 2012, 2, 586, 1-8.
108. Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011, 11, 2472-2477.
109. Long, D.; Li, W.; Ling, L.; Miyawaki, J.; Mochida, I.; Yoon, S.H. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 2010, 26, 16096-16102.
110. Jiang, J.; Du, X. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites. Nanoscale 2014.
111. Thiagarajan, S.; Chen, S. M. Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. Talanta 2007, 74, 212-22.
112. Yogeswaran, U.; Chen, S.M. Separation and concentration effect of f-MWCNTs on electrocatalytic responses of ascorbic acid, dopamine and uric acid at f-MWCNTs incorporated with poly (neutral red) composite films. Electrochim. Acta 2007, 52, 5985-5996.
113. Li, H.; Wang, Y.; Ye, D.; Luo, J.; Su, B.; Zhang, S.; Kong, J. An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta 2014, 127, 255-261.
114. Thiagarajan, S.; Tsai, T. H.; Chen, S. M. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 2009, 24, 2712-2715.
115. Yang, Y. J.; Li, W. CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosensors Bioelectron. 2014, 56, 300-306.
116. Du, J.; Yue, R.; Ren, F.; Yao, Z.; Jiang, F.; Yang, P.; Du, Y. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 2014, 53, 220-224.
117. Liu, X.; Zhang, L.; Wei, S.; Chen, S.; Ou, X.; Lu, Q. Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. Biosensors Bioelectron. 2014, 57, 232-238.
118. Lian, Q.; He, Z.; He, Q.; Luo, A.; Yan, K.; Zhang, D.; Lu, X.; Zhou, X. Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene. Anal. Chim. Acta 2014, 823, 32-39.
119. Nancy, T. E. M.; Kumary, V. A. Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Electrochim. Acta 2014, 133, 233-240.
120. 謝宜㚬. 2014, 以瞬間升溫法合成氮摻雜石墨烯及其在質子交換膜燃料電池陰極觸媒擔體之應用, 國立成功大學化學工程系所碩士學位論文.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw