進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508201418054500
論文名稱(中文) 應用光反應核黃素搭配藍光於改善牙本質黏著劑
論文名稱(英文) The use of photoreactive riboflavin and blue light irradiation in improving dentin bonding
校院名稱 成功大學
系所名稱(中) 口腔醫學研究所
系所名稱(英) Institute of Oral Medicine
學年度 102
學期 2
出版年 103
研究生(中文) 陳品如
研究生(英文) Ping-Ju Chen
電子信箱 T46014052@mail.ncku.edu.tw
學號 T46014052
學位類別 碩士
語文別 英文
論文頁數 55頁
口試委員 指導教授-莊淑芬
口試委員-陳玉玲
口試委員-林睿哲
口試委員-陳敏慧
中文關鍵字 牙本質黏著劑  核黃素  金屬基質蛋白酶  膠原蛋白交聯 
英文關鍵字 dentin bonding  riboflavin  MMPs  collagen crosslinking 
學科別分類
中文摘要 現今的牙本質黏著系統仍會遇到一些問題,例如膠原蛋白(collagen)的崩塌,不完全浸潤的樹脂單體,或被金屬基質蛋白酶(MMPs)所水解。近年來,有研究指出可利用核黃素(Riboflavin)搭配紫外光促使膠原蛋白交聯,進而達到牙本質黏著強度的提升。然而,較常使用於牙科治療的設備是藍光。本研究的目的在於評估利用核黃素搭配藍光所進行的交聯反應是否可有效改善牙本質黏著效果。
收集被拔除的人類臼齒,並去除咬合面琺瑯質。將暴露的牙本質先酸蝕,再分以下六個實驗組:控制組, 僅用去離子水處理; RF0.1U2:0.1% 核黃素處理後接著照射紫外光2分鐘; RF0.1BL1與RF0.1BL2:0.1% 核黃素處理後接著照射藍光1分鐘或2分鐘; RF1BL1與 RF1BL2:1%核黃素處理後接著照射藍光1分鐘或2分鐘。製備過的牙本質表面接著做黏著處理及樹脂填補。在儲放水中24小時後,將牙齒切成微柱狀,並分作初期測試及酵素降解七天後的微拉伸試驗。拉完的斷裂樣本亦在電子顯微鏡下做斷裂模式的評估。製備過的混和層型態亦可在電子顯微鏡下,藉由被磷酸和次氯酸鈉去移除牙本質的樣本上做觀察。奈米壓痕測試則是來看處理過後牙齒的微機械性質的改變。另外,也將牙齒磨成粉末,去礦化處理後再萃取出膠原蛋白,並利用酶譜分析以了解交聯反應對金屬基質蛋白酶的抑制效果。
初期的拉伸測試上,RF0.1BL2和RF1BL2表現最好的拉伸強度。其他經核黃素處理過的實驗組在數值上則與控制組差不多。再經酵素降解後,全部實驗組的拉伸強度皆下降,但數值上維持和初期測試一樣的趨勢。所有經核黃素處理的實驗組皆比控制組有較厚的混和層(hybrid layer)。而RF0.1BL1表現出最厚的混和層。奈米壓痕測試及酶譜分析皆顯示RF0.1BL2和RF1BL2有較高的硬度及較佳的金屬基質蛋白酶的抑制效果。RF0.1UV2和RF0.1BL1在上述兩者測試中的結果比起控制組則顯示略有改善。由這些結果可得知,RF0.1BL1顯示和RF0.1UV2差不多的拉伸強度,同時也具有最厚的混和層。而兩分鐘的藍光照射搭配核黃素雖然可增加機械強度及有效抑制金屬基質蛋白酶,但也造成了縮合的混和層並影響牙本質的黏著效果。整體而言,使用核黃素搭配藍光作為膠原蛋白的交聯劑需要有適當的組合,就如同0.1%核黃素搭配1分鐘藍光可改善牙本質黏著效果及耐久度一樣。
英文摘要 For contemporary dentin bonding systems, problems are encountered such as collagen collapse, incomplete infiltration of resin monomer, and the collagen hydrolysis by the matrix metalloproteinase (MMPs). Recently, the riboflavin (RF) has been approved to improve dentin bond through enhancing collagen crosslinking under UVA irradiation. However, the blue light is commonly used in dental clinic. The purpose of this study was to evaluate the use of RF combining blue light irradiation as a collagen cross-linker in improving dentin bonding.
Extracted human molars were collected, and occlusal enamel was removed. The exposed dentin was acid-etched, then divided into six experimental groups: Control, no treatment; RF0.1UV2, 0.1% RF treatment followed by 2-minute UVA irradiation; RF0.1BL1 and RF0.1BL2 , 0.1% RF followed by 1- or 2-minute blue light irradiation; RF1BL1and RF1BL2, 1% RF followed by 1- or 2- minute blue light irradiation. The dentin surfaces received bonding treatment and composite restorations. These teeth received the microtensile bond strength (µTBS) test at initial stage after storage for 24 hours, and after enzymatic degradation. In addition, the fracture modes of these microbeams were evaluated. The morphology of hybrid layers was also evaluated by removing dentin with phosphoric acid and NaOCl. A nanoindentation test was used for the mechanical properties of treated dentin. The teeth were also powdered and demineralized to extract collagen and received zymography assay of MMP2 activity.
For the initial μTBS, RF0.1UV2 and RF0.1BL1 showed the highest values, the other RFBL groups showed comparable μTBS as control. After enzyme degradation, all groups showed decreased but the same order of μTBS. All RF treated groups presented thicker hybrid layers than control with RF0.1BL1 showed the thickest one. The nanoindentation and zymography assay showed the highest hardness and MMP inhibition in RF0.1BL2 and RF1BL2. RF0.1UV2 and RF0.1BL1 showed mild improvement than the control. With these results, RF0.1BL1 showed comparable bond strength as RF0.1UV2 by constructing the thickest hybrid layer. 2-min BL irradiation increased mechanical properties and MMP inhibition, but they caused hybrid layer condensation and thus affected the dentin bonding. Accordingly, the protocol using RF and BL as a collagen crosslinker need an appropriate protocol while RF0.1BL1 improve dentin bonding and durability.
論文目次 ABSTRACT I
中文摘要 III
誌謝 V
CONTENT VII
LIST OF TABLES X
LIST OF FIGURES XI
REFERENCES 52

CHAPTER 1 INTRODUCTION 1
1.1. COMPOSITION AND STRUCTURE OF DENTIN 2
1.1.1. Type I collagen 3
1.1.2. Intrinsic intra- and inter-molecular cross-links 3
1.2. DENTIN BONDING SYSTEMS 5
1.2.1. Current dentin bonding systems 6
1.2.2. Hybrid layer 8
1.3. CHALLENGES OF CURRENT DENTIN BONDING 8
1.3.1. Incomplete infiltration of resin monomer 9
1.3.2. Collagen self-collapse 10
1.3.3. Enzymatic digestion by matrix metalloproteinases (MMPs) 11
1.4. ENHANCING DENTIN BONDING BY EXTRINSIC COLLAGEN CROSSLINKING 13
1.4.1. RF/UVA use in ophthalmology 14
1.4.2. RF/UVA use in dentin collagen 15
1.4.3. BL/UVA use in dentin collagen 15
1.5. MOTIVATION AND OBJECTIVE 17
CHAPTER 2 MATERIALS AND METHODS 18
2.1. ABSORBANCE OF RIBOFLAVIN 21
2.2. SPECTRUM OF LIGHT SOURCES 22
2.3. MICROTENSILE BOND STRENGTH (ΜTBS) TEST 22
2.4. FRACTURE PATTERN ANALYSIS BY SEM 27
2.5. HYBRIDIZATION QUALITY EVALUATION BY SEM 29
2.6. NANOINDENTATION TEST 30
2.7. ZYMOGRAPHY ANALYSIS OF MMP INHIBITION 32
CHAPTER 3 RESULTS 35
3.1. MICROTENSILE BOND STRENGTH (ΜTBS) TEST 35
3.2. FRACTURE PATTERN ANALYSIS 37
3.3. MORPHOLOGY OF HYBRID LAYER 38
3.4. NANOINDENTATION 41
3.5. ZYMOGRAPHY ASSAY 43
CHAPTER 4 DISCUSSION 45
CHAPTER 5 CONCLUSION 51
參考文獻 1.Sarrett, D.C., Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater, 2005. 21(1): p. 9-20.
2.Mjor, I.A., J.E. Moorhead, and J.E. Dahl, Reasons for replacement of restorations in permanent teeth in general dental practice. Int Dent J, 2000. 50(6): p. 361-6.
3.Linde, A., Dentin matrix proteins: composition and possible functions in calcification. Anat Rec, 1989. 224(2): p. 154-66.
4.Bedran-Russo, A.K., et al., Characterization of biomodified dentin matrices for potential preventive and reparative therapies. Acta Biomater, 2011. 7(4): p. 1735-41.
5.Orgel, J.P., et al., The in situ supermolecular structure of type I collagen. Structure, 2001. 9(11): p. 1061-9.
6.Nakabayashi, N., K. Kojima, and E. Masuhara, The promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res, 1982. 16(3): p. 265-73.
7.Bowen, R.L., et al., Smear layer: removal and bonding considerations. Oper Dent Suppl, 1984. 3: p. 30-4.
8.Pashley, D.H., The effects of acid etching on the pulpodentin complex. Oper Dent, 1992. 17(6): p. 229-42.
9.Perdigao, J., Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater, 2010. 26(2): p. e24-37.
10.Breschi, L., et al., Immunohistochemical analysis of collagen fibrils within the hybrid layer: a FEISEM study. Oper Dent, 2004. 29(5): p. 538-46.
11.Nakabayashi, N. and Y. Saimi, Bonding to intact dentin. J Dent Res, 1996. 75(9): p. 1706-15.
12.Breschi, L., et al., Immunocytochemical identification of type I collagen in acid-etched dentin. J Biomed Mater Res A, 2003. 66(4): p. 764-9.
13.Marshall, G.W., Jr., et al., The dentin substrate: structure and properties related to bonding. J Dent, 1997. 25(6): p. 441-58.
14.Breschi, L., et al., Dentin proteoglycans: an immunocytochemical FEISEM study. J Biomed Mater Res, 2002. 61(1): p. 40-6.
15.Inoue, S., et al., Effect of remaining dentin thickness and the use of conditioner on micro-tensile bond strength of a glass-ionomer adhesive. Dent Mater, 2001. 17(5): p. 445-55.
16.Van Meerbeek, B., et al., Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent, 2003. 28(3): p. 215-35.
17.Wang, Y. and P. Spencer, Quantifying adhesive penetration in adhesive/dentin interface using confocal Raman microspectroscopy. J Biomed Mater Res, 2002. 59(1): p. 46-55.
18.Armstrong, S.R., J.C. Keller, and D.B. Boyer, Mode of failure in the dentin-adhesive resin-resin composite bonded joint as determined by strength-based (muTBS) and fracture-based (CNSB) mechanical testing. Dent Mater, 2001. 17(3): p. 201-10.
19.Hashimoto, M., et al., Micromorphological changes in resin-dentin bonds after 1 year of water storage. J Biomed Mater Res, 2002. 63(3): p. 306-11.
20.Pashley, D.H., et al., Collagen degradation by host-derived enzymes during aging. J Dent Res, 2004. 83(3): p. 216-21.
21.Yang, B., et al., Effect of structural change of collagen fibrils on the durability of dentin bonding. Biomaterials, 2005. 26(24): p. 5021-31.
22.Brackett, W.W., et al., The effect of chlorhexidine on dentin hybrid layers in vivo. Oper Dent, 2007. 32(2): p. 107-11.
23.Brackett, M.G., et al., In vivo chlorhexidine stabilization of hybrid layers of an acetone-based dentin adhesive. Oper Dent, 2009. 34(4): p. 379-83.
24.Tay, F.R., D.H. Pashley, and M. Yoshiyama, Two modes of nanoleakage expression in single-step adhesives. J Dent Res, 2002. 81(7): p. 472-6.
25.Abdalla, A.I. and F. Garcia-Godoy, Bond strengths of resin-modified glass ionomers and polyacid-modified resin composites to dentin. Am J Dent, 1997. 10(6): p. 291-4.
26.Perdigao, J., E.J. Swift, and B.C. Cloe, Effects of etchants, surface moisture, and resin composite on dentin bond strengths. Am J Dent, 1993. 6(2): p. 61-4.
27.El Feninat, F., et al., A tapping mode AFM study of collapse and denaturation in dentinal collagen. Dent Mater, 2001. 17(4): p. 284-8.
28.De Munck, J., et al., A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res, 2005. 84(2): p. 118-32.
29.Hebling, J., et al., Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res, 2005. 84(8): p. 741-6.
30.Perdigao, J., et al., The effect of a re-wetting agent on dentin bonding. Dent Mater, 1999. 15(4): p. 282-95.
31.Boukpessi, T., et al., The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins. Biomaterials, 2008. 29(33): p. 4367-73.
32.Sulkala, M., et al., Matrix metalloproteinase-8 (MMP-8) is the major collagenase in human dentin. Arch Oral Biol, 2007. 52(2): p. 121-7.
33.Mazzoni, A., et al., Zymographic analysis and characterization of MMP-2 and -9 forms in human sound dentin. J Dent Res, 2007. 86(5): p. 436-40.
34.van Strijp, A.J., et al., Host-derived proteinases and degradation of dentine collagen in situ. Caries Res, 2003. 37(1): p. 58-65.
35.Zhang, S.C. and M. Kern, The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives. Int J Oral Sci, 2009. 1(4): p. 163-76.
36.Breschi, L., et al., Use of a specific MMP-inhibitor (galardin) for preservation of hybrid layer. Dent Mater, 2010. 26(6): p. 571-8.
37.Xu, C. and Y. Wang, Collagen cross linking increases its biodegradation resistance in wet dentin bonding. J Adhes Dent, 2012. 14(1): p. 11-8.
38.Bedran-Russo, A.K., et al., Application of crosslinkers to dentin collagen enhances the ultimate tensile strength. J Biomed Mater Res B Appl Biomater, 2007. 80(1): p. 268-72.
39.Bedran-Russo, A.K., et al., Changes in stiffness of demineralized dentin following application of collagen crosslinkers. J Biomed Mater Res B Appl Biomater, 2008. 86(2): p. 330-4.
40.Cilli, R., et al., Influence of glutaraldehyde priming on bond strength of an experimental adhesive system applied to wet and dry dentine. J Dent, 2009. 37(3): p. 212-8.
41.Fawzy, A.S., et al., Riboflavin as a dentin crosslinking agent: ultraviolet A versus blue light. Dent Mater, 2012. 28(12): p. 1284-91.
42.Wollensak, G., E. Spoerl, and T. Seiler, Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol, 2003. 135(5): p. 620-7.
43.Snibson, G.R., Collagen cross-linking: a new treatment paradigm in corneal disease - a review. Clin Experiment Ophthalmol, 2010. 38(2): p. 141-53.
44.Wollensak, G., E. Spoerl, and T. Seiler, Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg, 2003. 29(9): p. 1780-5.
45.Spoerl, E., G. Wollensak, and T. Seiler, Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res, 2004. 29(1): p. 35-40.
46.Cova, A., et al., Effect of UVA-activated riboflavin on dentin bonding. J Dent Res, 2011. 90(12): p. 1439-45.
47.Spoerl, E., et al., Safety of UVA-riboflavin cross-linking of the cornea. Cornea, 2007. 26(4): p. 385-9.
48.Chiang, Y.S., et al., Riboflavin-ultraviolet-A-induced collagen cross-linking treatments in improving dentin bonding. Dent Mater, 2013. 29(6): p. 682-92.
49.Pashley, D.H., et al., State of the art etch-and-rinse adhesives. Dent Mater, 2011. 27(1): p. 1-16.
50.Al-Ammar, A., J.L. Drummond, and A.K. Bedran-Russo, The use of collagen cross-linking agents to enhance dentin bond strength. J Biomed Mater Res B Appl Biomater, 2009. 91(1): p. 419-24.
51.Kinney, J.H., et al., The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res, 2003. 82(12): p. 957-61.
52.Nalla, R.K., et al., Effects of polar solvents on the fracture resistance of dentin: role of water hydration. Acta Biomater, 2005. 1(1): p. 31-43.
53.McCall, A.S., et al., Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest Ophthalmol Vis Sci, 2010. 51(1): p. 129-38.
54.Sionkowska, A., Flash photolysis and pulse radiolysis studies on collagen Type I in acetic acid solution. J Photochem Photobiol B, 2006. 84(1): p. 38-45.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2029-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw