進階搜尋


下載電子全文  
系統識別號 U0026-2508201415070300
論文名稱(中文) 天然有機物對水中砷之氧化還原特性研究
論文名稱(英文) Influence of Natural Organic Matters on the Redox Reaction of Arsenic in Natural Water
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 李晨瑜
研究生(英文) Chen-Yu Lee
學號 P56014204
學位類別 碩士
語文別 中文
論文頁數 124頁
口試委員 指導教授-林財富
口試委員-葉宣顯
口試委員-賴進興
中文關鍵字   高分子  鐵氧化物  中空纖維  有機物  氧化還原 
英文關鍵字 Adsorbent  Arsenic  Iron oxide  Polymer  Redox reaction 
學科別分類
中文摘要 砷為台灣西南部以及東北部地下水中常見的污染物,對人體具有急性及慢性的危害,我國飲用水水質標準為10 μg/L。由於傳統的淨水程序較無法有效去除砷,故有許多方法,例如吸附法,常被用於處理水中的砷,但是處理砷時,水中有機物常是影響砷型態及去除重要因素,本研究共分成兩部分,包括開發新型吸附材料以去除砷、以及探討天然水中有機物對砷型態之影響。
本研究結合高分子材料聚亞苯基楓以及合成鐵氧化物粉末,製成中空纖維條狀吸附劑,然後測試其對於砷的吸附效能。研究結果顯示,於pH值為7.5的情形下且砷的初始濃度約為10 mg/L時,本吸附劑對於三價砷的吸附效能較五價砷佳,每克吸附劑對於三價砷及五價砷的吸附效能分別為3.8及1.6毫克的砷。
本研究採集三種成功湖、嘉義地下水及鹽水地下水等三個天然水水樣,分別經0.45 μm濾膜以及奈米過濾後,分析水中有機物濃度、分子量大小、及類別等特性,再於水樣中添加1000 μg/L的三價砷或五價砷,進行砷的氧化還原動力實驗,以觀察砷的氧化還原情形。
研究結果顯示,三種水體含不同分子量、及不同濃度的有機物,但均會造成三價砷氧化,而只有成功湖水會造成五價砷的還原。由於成功湖水樣中的有機物多為較大分子量>30000Da),即使排除大部分大分子量有機物後,成功湖水樣仍有少量五價砷還原的情形,推測五價砷的還原除可能與成功湖內有機物種類有關外,亦可能會受大分子量有機物濃度之影響;水中生物聚合物、小分子腐植質及小分子有機酸等有機物,均會與砷有結合情形產生,但因有機物組成複雜,在缺乏資料庫情況下,無法比對出化合物與砷鍵結的價數及有機物種類。
英文摘要 Arsenic is commonly present in the groundwater of southwest and northeast of Taiwan. In this study, a novel adsorbent is developed to remove arsenic. In addition, as natural organic matter (NOM) may interact with arsenic in water, affecting the removal of arsenic. Therefore, the second part of this study is aimed to understand the impact of NOM on the oxidation-reduction of arsenic in water.
In the first part of the study, iron oxide powder was incorporated with a polymer material, to form a novel hollow fiber adsorbent, and was tested for the adsorption of arsenic. In the case of pH value of 7.5, initial arsenic concentration of 10 μg/L, the adsorption capacity of this adsorbent to As(III) is better than As(V).
To study the impact of NOM on arsenic speciation change, three natural water was collected and filtrated through different sizes of membrane, and studied for the characteristics of NOM in the water. The water was then spiked with arsenic and studied for the change of arsenic species and interaction with NOM.
Experimental results indicated that in the three water, although with different molecular weight and concentrations of NOM, As(III) was oxidized to As(V) within 10 days. However, only in one natural water, As(V) was reduced to As(III). As the most NOM in this natural water was with molecular weight (MW) of larger than 10,000Da, it is suspected that the large MW NOM may be responsible for the reduction of arsenic in the water.
論文目次 中文摘要 I
Abstract III
致謝 VIII
圖目錄 XIV
表目錄 XVIII
第一章 緒論 1
1-1 研究緣起 1
1-2 研究內容及目的 3
第二章 文獻回顧 4
2-1 砷的性質與危害 4
2-1-1砷的來源及對人體的危害 4
2-1-2環境中砷之水化特性 10
2-2水中砷之吸附去除 15
2-2-1 吸附法除砷技術 15
2-2-2鐵氧化物吸附劑 18
2-2-3高分子結合金屬氧化物複合材料的應用 28
2-2-4影響吸附效能之因子 31
2-3自然水體中的天然有機物 33
2-3-1天然有機物之介紹 33
2-3-2天然有機物特性分析 35
第三章 實驗材料與方法 45
3-1 高分子結合鐵氧化物合成中空纖維吸附劑 45
3-1-1 鐵氧化物粉末的製作 45
3-1-2 中空纖維吸附劑的製作 46
3-1-3 中空纖維吸附劑吸附砷之動力吸附測試實驗 48
3-1-4水樣中砷含量測定 49
3-2天然有機物對水中砷之氧化還原特性研究 53
3-2-1實驗程序 53
3-2-2水樣過濾 55
3-2-3三價砷/五價砷的氧化還原情形研究實驗 58
3-2-4有機物特性分析 59
第四章 結果與討論 63
4-1 高分子結合鐵氧化物製成中空纖維吸附劑 63
4-1-1合成鐵氧化物之特性 63
4-1-2 中空纖維吸附劑之特性 65
4-1-3 中空纖維吸附劑對於砷的吸附動力實驗 67
4-2 空白實驗 70
4-3 砷於成功湖水樣中的氧化還原情形 72
4-3-1 成功湖水樣有機物分析 72
4-3-2 砷的氧化還原情形 77
4-4砷於嘉義地下水水樣中的氧化還原情形 86
4-4-1 嘉義地下水水樣有機物分析 86
4-4-2砷在嘉義地下水水樣中的氧化還原情形 89
4-5 砷於鹽水地下水水樣中的氧化還原情形 94
4-5-1 鹽水地下水水樣有機物分析 94
4-5-2 砷的氧化還原情形 97
4-6 砷於自然水體中的氧化還原情形綜合比較 104
4-6-1自然水體中的有機物特性分析比較 104
4-6-2 砷的氧化還原情形綜合比較 109
第五章 結論與建議 114
5-1結論 114
5-2 建議 116
參考文獻 117
參考文獻 Aiken, G.R., McKnight, D.M., Wershaw, R.L. and MacCarthy, P. Humic substances in soil, sediment, and water: geochemistry, isolation and characterization. John Wiley & Sons. (1985)
Antelo, J., Avena, M., Fiol, S., López, R. and Arce, F. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface. Journal of Colloid and Interface Science 285(2). 476-486. (2005)
Aredes, S., Klein, B. and Pawlik, M. The removal of arsenic from water using natural iron oxide minerals. Journal of Cleaner Production 29. 208-213. (2012)
Bhowmick, S., Chakraborty, S., Mondal, P., Van Renterghem, W., Van den Berghe, S., Roman-Ross, G., Chatterjee, D. and Iglesias, M. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal 243. 14-23. (2014)
Chang, Y., Kim, K., Jung, J., Yang, J. and Lee, S. Application of iron-coated sand and manganese-coated sand on the treatment of both As (III) and As (V). Water Science & Technology 55(1-2). 69-75. (2007)
Chen, W., Parette, R., Zou, J., Cannon, F.S. and Dempsey, B.A. Arsenic removal by iron-modified activated carbon. Water research 41(9). 1851-1858. (2007)
Chen, W., Westerhoff, P., Leenheer, J.A. and Booksh, K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology 37(24). 5701-5710. (2003)
Chow, C., Van Leeuwen, J., Drikas, M., Fabris, R., Spark, K. and Page, D. The impact of the character of natural organic matter in conventional treatment with alum. Water Science and Technology 40(9). 97-104. (1999)
Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine chemistry 51(4). 325-346. (1996)
Cornell, R.M. and Schwertmann, U. The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons. (2006)
Cullen, W.R. and Reimer, K.J. Arsenic speciation in the environment. Chemical Reviews 89(4). 713-764. (1989)
Edzwald, J.K. and Tobiason, J.E. Enhanced coagulation: US requirements and a broader view. Water Science and Technology 40(9). 63-70. (1999)
Elizalde-González, M., Mattusch, J., Einicke, W.-D. and Wennrich, R. Sorption on natural solids for arsenic removal. Chemical Engineering Journal 81(1). 187-195. (2001)
Fabris, R., Chowa, C.W.K., Drikas, M. and Eikebrokk, B. Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Research 42(15). 4188-4196. (2008)
Giménez, J., Martinez, M., de Pablo, J., Rovira, M. and Duro, L. Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials 141(3). 575-580. (2007)
Goldberg, S. Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Science Society of America Journal 66(2). 413-421. (2002)
Guibal, E., Vincent, T. and Jouannin, C. Immobilization of extractants in biopolymer capsules for the synthesis of new resins: a focus on the encapsulation of tetraalkyl phosphonium ionic liquids. Journal of Materials Chemistry 19(45). 8515-8527. (2009)
Hajdú, A., Illés, E., Tombácz, E. and Borbáth, I. Surface charging, polyanionic coating and colloid stability of magnetite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 347(1). 104-108. (2009)
Huang, Y.X., Yang, J.K. and Keller, A.A. Removal of Arsenic and Phosphate from Aqueous Solution by Metal (Hydr-)oxide Coated Sand. Acs Sustainable Chemistry & Engineering 2(5). 1128-1138. (2014)
Huber, S. Application of LC-OCD in marine water. ht tp://doc-labor. de. (2007)
Huber, S.A., Balz, A., Abert, M. and Pronk, W. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography–organic carbon detection–organic nitrogen detection (LC-OCD-OND). Water Research 45(2). 879-885. (2011)
Hudson, N., Baker, A. and Reynolds, D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Research and Applications 23(6). 631-649. (2007)
Jeon, C.-S., Baek, K., Park, J.-K., Oh, Y.-K. and Lee, S.-D. Adsorption characteristics of As (V) on iron-coated zeolite. Journal of Hazardous Materials 163(2). 804-808. (2009)
Jiang, J., Bauer, I., Paul, A. and Kappler, A. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone. Environmental Science & Technology 43(10). 3639-3645. (2009)
Katsoyiannis, I.A. and Zouboulis, A.I. Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water research 36(20). 5141-5155. (2002)
Kosmulski, M., Maczka, E., Jartych, E. and Rosenholm, J.B. Synthesis and characterization of goethite and goethite–hematite composite: experimental study and literature survey. Advances in colloid and interface science 103(1). 57-76. (2003)
Lackowicz, J.R. Principles of fluorescence spectroscopy. Plenum Press,(New York, 1983) Chapter 5. 111-150. (1983)
Lakowicz, J.R. Principles of fluorescence spectroscopy. Springer. (2007)
Lakshmipathiraj, P., Narasimhan, B., Prabhakar, S. and Bhaskar Raju, G. Adsorption of arsenate on synthetic goethite from aqueous solutions. Journal of Hazardous Materials 136(2). 281-287. (2006)
Leenheer, J.A. and Croué, J.-P. Peer reviewed: characterizing aquatic dissolved organic matter. Environmental Science & Technology 37(1). 18A-26A. (2003)
Lièvremont, D., Bertin, P.N. and Lett, M.-C. Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91(10). 1229-1237. (2009)
Lu, F. Blackfoot disease: arsenic or humic acid? The Lancet 336(8707). 115-116. (1990)
Mak, M.S., Rao, P. and Lo, I. Effects of hardness and alkalinity on the removal of arsenic (V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron. Water research 43(17). 4296-4304. (2009)
Manning, B.A. and Goldberg, S. Adsorption and stability of arsenic (III) at the clay mineral-water interface. Environmental Science & Technology 31(7). 2005-2011. (1997)
Mohan, D. and Pittman, C.U. Arsenic removal from water/wastewater using adsorbents - A critical review. Journal of Hazardous Materials 142(1-2). 1-53. (2007)
Mori, S. and Barth, H.G. Size exclusion chromatography. Springer. (1999)
Pan, Y.-F., Chiou, C.T. and Lin, T.-F. Adsorption of arsenic (V) by iron-oxide-coated diatomite (IOCD). Environmental Science and Pollution Research 17(8). 1401-1410. (2010)
Rausa, R. and Calemma, V. Determination of molecular size distributions of humic acids by high-performance size-exclusion chromatography. Journal of Chromatography A 541. 419-429. (1991)
Redman, A.D., Macalady, D.L. and Ahmann, D. Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science & Technology 36(13). 2889-2896. (2002)
Saha, J., Dikshit, A., Bandyopadhyay, M. and Saha, K. A review of arsenic poisoning and its effects on human health. Critical reviews in environmental science and technology 29(3). 281-313. (1999)
Saito, T., Koopal, L.K., van Riemsdijk, W.H., Nagasaki, S. and Tanaka, S. Adsorption of humic acid on goethite: Isotherms, charge adjustments, and potential profiles. Langmuir 20(3). 689-700. (2004)
Sarkar, S., Guibal, E., Quignard, F. and SenGupta, A. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. Journal of Nanoparticle Research 14(2). 1-24. (2012)
Sengupta, A.K. Ion exchange technology: advances in pollution control. CRC Press. (1995)
Smedley, P. and Kinniburgh, D. A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry 17(5). 517-568. (2002)
Striegel, A., Yau, W.W., Kirkland, J.J. and Bly, D.D. Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography. John Wiley & Sons. (2009)
Sutton, R. and Sposito, G. Molecular structure in soil humic substances: the new view. Environmental Science & Technology 39(23). 9009-9015. (2005)
Swietlik, J., Dabrowska, A., Raczyk-Stanislawiak, U. and Nawrocki, J. Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Research 38(3). 547-558. (2004)
Thirunavukkarasu, O., Viraraghavan, T. and Subramanian, K. Arsenic removal from drinking water using iron oxide-coated sand. Water, air, and soil pollution 142(1-4). 95-111. (2003)
Tipping, E. Cation binding by humic substances. Cambridge University Press. (2002)
Uchimiya, M. and Stone, A.T. Reversible redox chemistry of quinones: Impact on biogeochemical cycles. Chemosphere 77(4). 451-458. (2009)
Wang, L., Condit, W.E., Chen, A.S. and Sorg, T.J. Technology selection and system design US EPA arsenic removal technology demonstration program round 1. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency. (2004)
Weng, L., Van Riemsdijk, W.H. and Hiemstra, T. Effects of fulvic and humic acids on arsenate adsorption to goethite: Experiments and modeling. Environmental Science & Technology 43(19). 7198-7204. (2009)
Wittbrodt, P.R. and Palmer, C.D. Effect of temperature, ionic strength, background electrolytes, and Fe (III) on the reduction of hexavalent chromium by soil humic substances. Environmental Science & Technology 30(8). 2470-2477. (1996)
Zagorodni, A.A. Ion Exchange Materials: Properties and Applications: Properties and Applications. Elsevier. (2006)
Zeng, H., Fisher, B. and Giammar, D.E. Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent. Environmental Science & Technology 42(1). 147-152. (2007)
Zhang, W., Singh, P., Paling, E. and Delides, S. Arsenic removal from contaminated water by natural iron ores. Minerals engineering 17(4). 517-524. (2004)
Zouboulis, A.I. and Katsoyiannis, I.A. Arsenic removal using iron oxide loaded alginate beads. Industrial & engineering chemistry research 41(24). 6149-6155. (2002)
王明光,“土壤環境化學",國立編譯館出版,1997。
吳一民,“灰渣類廢棄物應用於廢水中有機物去除之研究”,國立成功大學環境工程學系碩士論文,1997。
吳錦昆,“氧化鋁吸附地下水中砷之研究”,國立成功大學環境工程學系碩士論文,1999。
李源富,“混凝前處理對NOM去除與UF薄膜阻塞之影響”,國立成功大學環境工程學系碩士論文,2011。
李雅萍,“混凝與離子交換法去除水中As(V)之研究”,國立台灣大學環境工程研究所碩士論文,1998。
李惠菁,“多壁奈米碳管/聚乙烯醇高分子複合材料合成與物性分析研究”,國立清華大學材料科學工程系碩士論文,2008。
黃任偉,“粒狀氫氧化鐵吸附地下水中砷之研究”,國立成功大學環境工程系碩士論文,2002。
張永信,“薄膜程序用於工業區廢水回收之研究”,國立成功大學環境工程學系碩士論文,2008。
孫嘉福,駱尚廉,“氧化鐵之特性與應用”,自來水會刊雜誌,第49期。
賴進興,“氧化鐵覆膜濾砂吸附過濾水中銅離子之研究”,國立台灣大學環境工程研究所博士論文,1995。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw