進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508201414185800
論文名稱(中文) 針對SCUBE3篩選適體及應用
論文名稱(英文) The Screening and Application of Aptamers against SCUBE3
校院名稱 成功大學
系所名稱(中) 口腔醫學研究所
系所名稱(英) Institute of Oral Medicine
學年度 102
學期 2
出版年 103
研究生(中文) 曾皓郁
研究生(英文) Hao-Yu Tseng
學號 T46014036
學位類別 碩士
語文別 英文
論文頁數 42頁
口試委員 指導教授-陳玉玲
共同指導教授-洪澤民
口試委員-顏家瑞
口試委員-許耿福
中文關鍵字 SCUBE3  表皮細胞間質化  癌轉移  適體 
英文關鍵字 SCUBE3  EMT  Metastasis  Aptamer 
學科別分類
中文摘要 Signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) 是一個經過糖修飾的分泌型蛋白,在肺癌的腫瘤組織中已被發現會大量表現,也與肺癌細胞的轉移能力有相關。在先前的研究已指出SCUBE3扮演與TGF-β相似的重要角色,藉由TGF-β receptors-Smad2/3 pathway來調控腫瘤發展。因此,能找到SCUBE3專一性的抑制劑對於肺癌的治療應用相當具有潛力。適體(Aptamers)為短片段的DNA或是RNA,對於其標定的分子可以形成高度專一性二級結構。在這次的研究中,我們用systematic evolution of ligands by exponential enrichment (SELEX)的方式針對SCUBE3的重組蛋白來進行單股DNA 適體篩選。目前,我們已經篩選出SCUBE3-specific aptamers,S3A1(Dissociation constant : 18nM) 。且跟Control cell 相比,S3-A1傾向與 SCUBE3-overexpressed cells做結合。在TGF-β receptors-Smad2/3 signaling,S3-A1對lung cancer cell似乎會增加磷酸化Smad2的表現,所以可能暗示著 S3-A1會促進活化SCUBE3。藉由Wound-healing Assay我們發現,S3-A1促進SCUBE3-induced cancer cells 遷移。所以接下來,我們將進一步調查S3-A1對cancer cells 和vascular endothelial cells由SCUBE3所調控影響的生物功能。因此,目前可以了解S3-A1直接 與SCUBE3結合,且可能會影響SCUBE3/TGFβR/Smad2 signaling 並調控癌症的發展之外,也在體外細胞實驗中發現S3-A1能夠阻斷內皮細胞血管生成。
英文摘要 Signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3), a secreted glycoprotein, has been found to be overexpressed in lung cancer tumor tissues and correlated with the invasive ability of lung cancer cells. Previous study has showed that SCUBE3 may have a critical role with TGF-β, and control tumorigenesis via the TGF-β receptors-Smad2/3 pathway. Here, our hypothesis is SCUBE3-specific inhibitors may have potential therapeutic applications for lung cancer. Aptamers are short DNA or RNA fragments that can form complex secondary structures to have specific ability for its target molecule. In this study, we used recombinant SCUBE3 proteins to screen single-stranded DNA aptamers by systematic evolution of ligands by exponential enrichment, SELEX, and identified a SCUBE3-specific aptamer, S3-A1. We found that biotinylated S3-A1 specifically binds to SCUBE3 proteins with an around 18nM dissociation constant. S3-A1 also preferentially binds to SCUBE3-overexpred cells compared with control cells. Treatment of S3-A1 on lung cancer cells seemed to increase phosphorylation of Smad2 implying that S3-A1 might promote SCUBE in TGF-β receptors-Smad2/3 pathway activation. By wound-healing assay, we found that S3-A1 promoted SCUBE3-induced cancer cells migration. Next, we will further investigate the influences of S3-A1 on SCUBE3-mediated biological functions of cancer cells and vascular endothelial cells. In conclusion, S3-A1 may affect SCUBE3/TGFβR/Smad2 signaling by directly binding SCUBE3 and regulate cancer progression and it also inhibits in vitro tube formation of vascular endothelial cells.
論文目次 摘要 I
Abstract II
ACKNOWLEDGEMENT III
CONTENTS V
ABBREVIATION VIII
INTRODUCTION 1
1. Aptamer 1
Origin of Aptamer 1
Superiority of Aptamer 1
2. SCUBE3 3
Signal peptide-CUB-EGF-like domain-containing protein 3 3
Relevance of SCUBE3 in Cancers 4
RATIONALE AND SPECIFIC AIMS 6
MATERIALS AND METHODS 7
Cell Lines and Culture 7
Nitrocellulose Membrane Filtration-Based SELEX 7
Alignment and Structure Prediction 8
Surface Plasmon Resonance – Biacore3000 8
Magnetic Beads Pull-down Assay 9
Immunofluorescence 9
Cell Morphology 9
Cell Proliferation – WST-1 assay 10
Wound Healing Assay 10
Tube Formationy 10
Western Blot Analysis 11
Statistical Analysis 12
RESULTS 13
DNA aptamer against SCUBE3 13
Specificity of S3-A1 for SCUBE3 13
Functions of S3-A1 for lung cancer cells 14
S3-A1 enhances SCUBE3/TGF-β receptor signaling 15
Function of SCUBE3 for Angiogenesis 15
Function of S3-A1 for Angiogenesis 16
DISSCUSION 17
CONCLUSION 20
REFERRENCES 21
TABLE 26
Table. 1 Preparation for SELEX buffer 26
Table. 2 Preparation for PCR 27
Primer used in PCR (Invitrogen) 27
PCR Reagents 27
PCR Program 27
Table. 3 Aptamers used in Experiments 28
FIGURE 29
Figure 1. Flowchart of Membrane SELEX. 29
Figure 2. Isolation and Identification of S3-A1. 30
Figure 3. Specificity of S3-A1 to SCUBE3. 32
Figure 4. S3-A1 increases migration of cancer cells. 33
Figure 5. S3-A1 does not affect proliferation of cancer cells. 34
Figure 6. S3-A1 induces epithelial–mesenchymal transition (EMT) of lung cancer cells. 35
Figure 7. S3-A1 enhances SCUBE3/TGF-β receptor signaling. 36
Figure 8. SCUBE3 regulates HUVECs tube formation. 37
Figure 9. S3-A1 inhibits HUVECs tube formation through blockading pAkt. 39
APPENDIX 40
Appendix 1. Antibodies 40
Appendix 2. Reagents 41
Appendix 3. Equipment 42
參考文獻 Angiolillo, A.L., C. Sgadari, D.D. Taub, F. Liao, J.M. Farber, S. Maheshwari, H.K. Kleinman, G.H. Reaman, and G. Tosato. 1995. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. The Journal of experimental medicine. 182:155-162.
Bruno, J.G. 2013. A review of therapeutic aptamer conjugates with emphasis on new approaches. Pharmaceuticals. 6:340-357.
Cho, E.J., J.W. Lee, and A.D. Ellington. 2009. Applications of aptamers as sensors. Annual review of analytical chemistry. 2:241-264.
Dassie, J.P., X.Y. Liu, G.S. Thomas, R.M. Whitaker, K.W. Thiel, K.R. Stockdale, D.K. Meyerholz, A.P. McCaffrey, J.O. McNamara, 2nd, and P.H. Giangrande. 2009. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nature biotechnology. 27:839-849.
Drescher, D.G., N.A. Ramakrishnan, and M.J. Drescher. 2009. Surface plasmon resonance (SPR) analysis of binding interactions of proteins in inner-ear sensory epithelia. Methods in molecular biology. 493:323-343.
Ellington, A.D., and J.W. Szostak. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature. 346:818-822.
Ellington, A.D., and J.W. Szostak. 1992. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature. 355:850-852.
Famulok, M., and G. Mayer. 2011. Aptamer modules as sensors and detectors. Acc Chem Res. 44:1349-1358.
Fass, L. 2008. Imaging and cancer: a review. Molecular oncology. 2:115-152.
Ferreira, C.S., M.C. Cheung, S. Missailidis, S. Bisland, and J. Gariepy. 2009. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res. 37:866-876.
Gold, L., N. Janjic, T. Jarvis, D. Schneider, J.J. Walker, S.K. Wilcox, and D. Zichi. 2012. Aptamers and the RNA world, past and present. Cold Spring Harbor perspectives in biology. 4.
Haworth, K., F. Smith, M. Zoupa, M. Seppala, P.T. Sharpe, and M.T. Cobourne. 2007. Expression of the Scube3 epidermal growth factor-related gene during early embryonic development in the mouse. Gene expression patterns : GEP. 7:630-634.
Hicke, B.J., and A.W. Stephens. 2000. Escort aptamers: a delivery service for diagnosis and therapy. The Journal of clinical investigation. 106:923-928.
Hicke, B.J., A.W. Stephens, T. Gould, Y.F. Chang, C.K. Lynott, J. Heil, S. Borkowski, C.S. Hilger, G. Cook, S. Warren, and P.G. Schmidt. 2006. Tumor targeting by an aptamer. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 47:668-678.
Huber, M.A., N. Kraut, and H. Beug. 2005. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Current opinion in cell biology. 17:548-558.
Jayasena, S.D. 1999. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical chemistry. 45:1628-1650.
Jiang, B.H., and L.Z. Liu. 2008. AKT signaling in regulating angiogenesis. Current cancer drug targets. 8:19-26.
Jiang, B.H., and L.Z. Liu. 2009. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Advances in cancer research. 102:19-65.
Keefe, A.D., S. Pai, and A. Ellington. 2010. Aptamers as therapeutics. Nature reviews. Drug discovery. 9:537-550.
Lee, S.J., B.S. Youn, J.W. Park, J.H. Niazi, Y.S. Kim, and M.B. Gu. 2008. ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Analytical chemistry. 80:2867-2873.
Levy-Nissenbaum, E., A.F. Radovic-Moreno, A.Z. Wang, R. Langer, and O.C. Farokhzad. 2008. Nanotechnology and aptamers: applications in drug delivery. Trends in biotechnology. 26:442-449.
Li, S., H. Xu, H. Ding, Y. Huang, X. Cao, G. Yang, J. Li, Z. Xie, Y. Meng, X. Li, Q. Zhao, B. Shen, and N. Shao. 2009. Identification of an aptamer targeting hnRNP A1 by tissue slide-based SELEX. The Journal of pathology. 218:327-336.
Luangdilok, S., C. Box, K. Harrington, P. Rhys-Evans, and S. Eccles. 2011. MAPK and PI3K signalling differentially regulate angiogenic and lymphangiogenic cytokine secretion in squamous cell carcinoma of the head and neck. European journal of cancer. 47:520-529.
Majumder, P., K.N. Gomes, and H. Ulrich. 2009. Aptamers: from bench side research towards patented molecules with therapeutic applications. Expert opinion on therapeutic patents. 19:1603-1613.
Nagata, D., M. Mogi, and K. Walsh. 2003. AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem. 278:31000-31006.
Ng, E.W., D.T. Shima, P. Calias, E.T. Cunningham, Jr., D.R. Guyer, and A.P. Adamis. 2006. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature reviews. Drug discovery. 5:123-132.
Ni, X., M. Castanares, A. Mukherjee, and S.E. Lupold. 2011. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 18:4206-4214.
Osborne, S.E., I. Matsumura, and A.D. Ellington. 1997. Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol. 1:5-9.
Perlikos, F., K.J. Harrington, and K.N. Syrigos. 2013. Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Critical reviews in oncology/hematology. 87:1-11.
Radi, A.-E. 2011. Electrochemical Aptamer-Based Biosensors: Recent Advances and Perspectives. International Journal of Electrochemistry. 2011.
Song, G.H., J. Wang, J.C. Lu, H.Y. Xu, Z.Q. Zhao, Q.L. Tang, C.Y. Zou, J.Q. Yin, X. Xie, and J.N. Shen. 2014. Role of SCUBE3 in promoting osteosarcoma cell growth and its association with prognosis. Journal of Southern Medical University. 34:617-621.
Song, K.M., S. Lee, and C. Ban. 2012. Aptamers and their biological applications. Sensors. 12:612-631.
Steeg, P.S. 2003. Metastasis suppressors alter the signal transduction of cancer cells. Nature reviews. Cancer. 3:55-63.
Steeg, P.S. 2006. Tumor metastasis: mechanistic insights and clinical challenges. Nature medicine. 12:895-904.
Tan, W., H. Wang, Y. Chen, X. Zhang, H. Zhu, C. Yang, R. Yang, and C. Liu. 2011. Molecular aptamers for drug delivery. Trends in biotechnology. 29:634-640.
Tang, S.Y., and T. Alliston. 2013. Regulation of postnatal bone homeostasis by TGFbeta. BoneKEy reports. 2:255.
Tu, C.F., K.C. Tsao, S.J. Lee, and R.B. Yang. 2014. SCUBE3 (Signal Peptide-CUB-EGF Domain-containing Protein 3) Modulates Fibroblast Growth Factor Signaling during Fast Muscle Development. J Biol Chem.
Tuerk, C., and L. Gold. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249:505-510.
Wang, R.E., Y. Zhang, J. Cai, W. Cai, and T. Gao. 2011. Aptamer-based fluorescent biosensors. Curr Med Chem. 18:4175-4184.
Wu, B.T., Y.H. Su, M.T. Tsai, S.M. Wasserman, J.N. Topper, and R.B. Yang. 2004. A novel secreted, cell-surface glycoprotein containing multiple epidermal growth factor-like repeats and one CUB domain is highly expressed in primary osteoblasts and bones. J Biol Chem. 279:37485-37490.
Wu, Y.Y., K. Peck, Y.L. Chang, S.H. Pan, Y.F. Cheng, J.C. Lin, R.B. Yang, T.M. Hong, and P.C. Yang. 2011. SCUBE3 is an endogenous TGF-beta receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer. Oncogene. 30:3682-3693.
Xavier, G.M., L. Panousopoulos, and M.T. Cobourne. 2013. Scube3 is expressed in multiple tissues during development but is dispensable for embryonic survival in the mouse. PloS one. 8:e55274.
Yang, H.Y., C.F. Cheng, B. Djoko, W.S. Lian, C.F. Tu, M.T. Tsai, Y.H. Chen, C.C. Chen, C.J. Cheng, and R.B. Yang. 2007. Transgenic overexpression of the secreted, extracellular EGF-CUB domain-containing protein SCUBE3 induces cardiac hypertrophy in mice. Cardiovasc Res. 75:139-147.
Yang, M., M. Guo, Y. Hu, and Y. Jiang. 2013. Scube regulates synovial angiogenesis-related signaling. Medical hypotheses. 81:948-953.
Yu, H., and R. Jove. 2004. The STATs of cancer--new molecular targets come of age. Nature reviews. Cancer. 4:97-105.
Zhang, Y., H. Hong, and W. Cai. 2011. Tumor-targeted drug delivery with aptamers. Curr Med Chem. 18:4185-4194.
Zhao, C., Q. qin, Q. Wang, J. Zhang, Y. Xu, W. Li, M. Gu, S. Chen, and A. Deng. 2013. SCUBE3 overexpression predicts poor prognosis in non-small cell lung cancer. Bioscience trends. 7:264-269.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw