進階搜尋


下載電子全文  
系統識別號 U0026-2508201414165700
論文名稱(中文) 利用電漿放電分解碳氫化合物但不產生二氧化碳之產氫方法
論文名稱(英文) Decomposition of Hydrocarbon by Using Plasma Discharge for Producing Hydrogen without CO2
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 102
學期 2
出版年 103
研究生(中文) 陳資菁
研究生(英文) Tzu-Ching Chen
學號 LA6011019
學位類別 碩士
語文別 英文
論文頁數 56頁
口試委員 指導教授-陳秋榮
共同指導教授-西田靖
口試委員-西村泰太郎
中文關鍵字 電漿放電  產氫  介電質放電  高壓短脈衝 
英文關鍵字 Plasma discharge  Hydrogen  High voltage pulse  Dielectric barrier discharge 
學科別分類
中文摘要 氫是未來有潛力的乾淨能源之一。這篇論文中,我們提出的產氫方法是利用電漿放電將碳氫化合物分解成氫氣和碳。為了提高產氫的效率,我們設計不同結構的電極和改變脈衝寬度。我們嘗試許多分解碳氫化合物的電極,例如: 以玻璃、陶瓷或填充催化劑為介電質的電極產生介電屏障放電。在以上的電極中,各有不同的特性,但以陶瓷為介電質的電極在分解碳氫化合物上有最好的效率及穩定性。我們也從事研究脈衝寬度效應與分解速率的關係。目前使用高壓電源脈衝產生器無法產生理想的波形。例如,當脈衝寬度超過10微秒,電壓波形會歪曲並有擾動,但會發生多次較短時間的放電反應,實驗結果得到在相同的運轉時間裡,分解速率增加(與5μs的例子做比較),而且在相同的輸入能量下,分解速率隨著脈衝寬度變寬而上升。但是脈衝寬度超過20微秒寬度,分解速率反而下降。因此,20μs 高壓脈衝可得到最好的產氫效率和效能。目前達到產氫的結果是產生1 mol的氫氣需要0.33 kWh的能量
英文摘要 Hydrogen is a long-term green energy solution. In the thesis, we describe a plasma method for decomposing methane or propane molecules into hydrogen molecules and carbon particles. The plasma discharge is generated by applying a pulsed high voltage to the electrode immersed in the methane or propane gas inside a dielectric barrier discharge (DBD) reactor. We investigate the hydrocarbon gas decomposition efficiency and hydrogen production by using different types of electrodes and different waveforms (pulse width and repetition rate) of high voltage pulses. The ceramic based DBD is the stable and most efficient electrode for decomposition. For producing discharges, high voltage pulses with width 5-30 μs and the pulse repetition rate of 4 kHz and maximum voltage amplitude of 13 kV are employed. The decomposition rate is observed to depend on the pulse width applied to DBD electrode. The present high voltage power source used in the experiments does not produce good waveform. If the pulse width is more than 10 μs, the pulse is distorted by multiple oscillation. As an example, a voltage pulse with 20 μs width has four ~5μs oscillations superposed on the voltage pulse, and thus for longer pulse width there are also more plasma discharges and the decomposition rate increases. However, for pulse width longer than 20μs the decomposition rate decreases. At present, the pulse with 20 μs pulse width shows the best efficiency for decomposition. The experimental results show that the decomposition depends on the input pulse width, which is related to the lifetime of plasma produced by each pulse. At present we have achieved the result that it requires approximately 0.33 kWh input energy to produce 1 mole of Hydrogen.
論文目次 摘要 I
Abstract II
誌謝 III
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1-1 PREFACE 1
1-2 RESEARCH OBJECTIVE AND MOTIVATION 2
Chapter 2 Literature Review 4
2-1 HYDROGEN PRODUCTION TECHNOLOGIES 4
2-1-1 Steam Reforming of Methane 5
2-1-2 Partial Oxidation 6
2-1-3 Electrolysis of Water 6
2-2 INTRODUCTION OF PLASMA 8
2-3 ELECTRICAL GAS DISCHARGE 9
2-4 Non-thermal plasma and thermal plasma 11
2-4-1 Glow discharge 13
2-4-2 Corona discharge [7] 14
2-4-3 Dielectric barrier discharge (DBD) 16
2-5 PRINCIPLE OF DECOMPOSITION OF HYDROCARBON 17
Chapter 3 Experimental set up and methods 20
3-1 THE DESIGN OF PLASMA DISCHARGE SYSTEM 20
3-2 EXPERIMENTAL PROCEDURE 22
3-3 GAS CHROMATOGRAPHY (GC-2014) 23
3-4 DIFFERENT ELECTRODES 25
3-5 MEASUREMENT OF ENERGY CONSUMPTION IN PLASMA REGION OF DBD REACTORS 29
Chapter 4 Experimental result and discussion 35
4-1 PRODUCTS OF HYDROCARBON DECOMPOSITION 35
4-2 DECOMPOSITION OF METHANE AND PROPANE 36
4-3 HYDROGEN PRODUCTION BY USING CATALYST TYPE ELECTRODE 38
4-4 HYDROGEN PRODUCTION BY USING DIFFERENT ELECTRODES 40
4-5 HYDROGEN PRODUCTION RATE AND EFFICIENCY IN DIFFERENT PULSE WIDTH 44
Chapter 5 Conclusion & Future work 55
Reference 56
參考文獻 1. G. Petitpas et al. (2007), A comparative study of non-thermal plasma assisted reforming technologies, International Journal of Hydrogen Energy 32, 2848-2867.
2. L. Fulcheri and Y. Schwob (1995), From methane to hydrogen, carbon black and water, International Journal of Hydrogen Energy 20, 197-202
3. A. Fridman (2008), Plasma Chemistry, Cambridge University Press.
4. I. Aleknaviciute et al. (2013), Non-Thermal Plasma Reactor for Decomposition of Propane to Generate COx Free Hydrogen, JOCET 1, 105-109.
5. V. Rochus et al. (2014), 2D micro-chamber for DC plasma working at low power,15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), IEEE,1-6.
6. A. Bogaerts et al. (2002), Gas discharge plasmas and their applications, Spectrochimica Acta Part B 57, 609-658.
7. B. Eliasson and U. Kogelschatz (1991), "Nonequilibrium volume plasma chemical processing, IEEE Transactions on Plasma Science 19, 1063-1077.
8. U. Kogelschatz et al. (1997), Dielectric-barrier discharges. Principle and applications, Journal de Physique IV 7, 47-66.
9. Y. Nishida, C. Z. Cheng, K. Iwasaki (2014), Hydrogen Production From Hydrocarbons with Use of Plasma Discharges Under High Pressure Condition, IEEE Transactions on Plasma Science, doi:10.1109/TPS.2014.2337351.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-09-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-09-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw