進階搜尋


下載電子全文  
系統識別號 U0026-2508201413555200
論文名稱(中文) 使用近紅外光激發轉換劑增強光固化牙科複合樹脂聚合之探討
論文名稱(英文) Using NIR activated phosphors to enhance polymerization of light-curable dental composites
校院名稱 成功大學
系所名稱(中) 口腔醫學研究所
系所名稱(英) Institute of Oral Medicine
學年度 102
學期 2
出版年 103
研究生(中文) 廖楚鈞
研究生(英文) Chu-Chun Liao
學號 T46011088
學位類別 碩士
語文別 英文
論文頁數 54頁
口試委員 指導教授-林睿哲
共同指導教授-莊淑芬
口試委員-陳敏慧
口試委員-詹正雄
中文關鍵字 複合樹脂  上轉換熒光粉  近紅外光  聚合度  牙齒組織遮蔽  顯微硬度 
英文關鍵字 composite resin  upconversion phosphor  near-infrared light  degree of conversion  under tooth substances  microhardness. 
學科別分類
中文摘要 光固化樹脂已被應用於牙體復形數十年。在臨床操作過程,儘管這項技術廣泛應用,但還是存在部分問題。牙科樹脂經由藍光照射固化,由於藍光穿透性低,操作程序被限制在光源能穿透的範圍(2-3 mm),所以操作上必須應用於可接收光線的窩洞,且須層層的堆疊填補。近紅外光(NIR)比藍光能穿透較深層組織。透過添加近紅外光激發轉換螢光粉於牙科樹脂,可構成新的固化反應。本實驗目的是探討這種新的固化途徑,並和傳統牙科複合樹脂進行聚合特性比較。
首先,將螢光粉研磨至1.8、0.5以及0.3 μm大小,分別檢測螢光粉紅外光和經轉換激發光的發光強度。並選用0.5 μm顆粒大小為接下來實驗使用。為評估適當的螢光粉比例,將螢光粉與Z100牙科樹脂以不同的比例混和成3個組別:Z100 (0% 螢光粉)、 UP5 (混和5wt% 螢光粉)及UP10 (混10wt% 螢光粉)進行測試。為檢測不同光照的影響,使用紅外線1至10分鐘或結合藍光照射在UP5上,評估樹脂固化程度。照射方式為將樣品填入模具槽內透過開口照射藍光、紅外光或藍光加紅外光。檢測不同組別在不同深度的微硬度來評估其轉換度,以及檢測其聚合深度和聚合度。接著做溫度分析觀察紅外線對溫度的影響。最後測試樹脂在牙齒的遮蔽下 (牙釉質、牙本質及牙釉質+牙本質雙層體 ),不同光照方式之微硬度測試。
在適當比例的實驗中,UP5/紅外線加藍光這個組別在不同深度有最高的微硬度,而藍光輔助紅外線大約比藍光增加1mm的聚合深度。在不同光照影響中,20秒藍光至少加上5分鐘紅外線才會明顯改變樹脂表面微硬度,且照射10分鐘紅外線後微硬度明顯增加。單純照射紅外光10分鐘表現最低的微硬度。在金屬模具的溫度分析實驗顯示,紅外光會造成2 mm深處溫度上升大約12 oC,4 mm深處大約7.1 oC。 在牙齒模型的溫度分析實驗顯示,紅外光會造成距離樹脂2 mm遠,且2mm深處溫度上升大約16.4 oC。在穿透齒質聚合測試中,牙釉質+牙本質雙層體影響藍色光穿透比牙釉質和牙本質大。不論在牙釉質、牙本質及牙釉質+牙本質雙層體遮蔽下藍光照射600秒顯示最高的微硬度。
根據這些發現,轉換熒光粉配合近紅外光可能是一個新的方式應用於牙科複合樹脂,能聚合更深並提高聚合度。本研究提供一些新資料,在提供牙科複合材料未來發展的另一個方向。
英文摘要 Light-curing composite resins have been widely used in restorative dentistry for several decades. Despite the fact of their wide application, there are clinical problems due to limitations of blue light penetration in 2-3 mm depth. Their applications are restricted in cavities exposed to the light source, where layered filling is still required.
The near-infrared light may penetrate tissue deeper than blue light does. A novel resin polymerization reaction has been proposed by adding upconversion phosphor (UP) particles into dental composite and conversion via the excitation of near-infrared light. The purpose of this study is to examine the novel curing pathway of dental composites, and to compare its property of polymerization with traditional light-cured dental composites.
The efficacy of UPs in upconverted luminous intensity of the fluorescence was first characterized. The UP particles were ground into sizes of 1.8, 0.5, and 0.3 μm. The excitation spectra of these UPs were examined, and their mixtures with dental composite were evaluated, thus to determine the proper UP particle size. With the result, 0.5-μm UP was chosen as adjunct filler for further examination. UP was mixed into Z100 microhybrid composites at different conditions to generate three composites: Z100 (0% UP), UP5 (the mixture of 5 wt% UP), and UP10 (the mixture of 10 wt% UP). To examine the effect of curing protocols, UP5 received either 3-10 min NIR irradiation or the combination with BL (BL+NIR), and subsequently received a microhardness test to compare the degree of conversion of composites at different depths. The depths of cure in different composite materials were also evaluated. These materials also received FTIR analysis for degrees of conversion. A temperature analysis was performed to measure the temperature rise during NIR irradiation. Finally, these UP tuned composites were evaluated about their applications to enhance the polymerization under tooth substances (enamel, dentin, and enamel + dentin bilayer).
For the proper UP ratio, UP5/BL+NIR showed higher microhardness at each depth compared to UP10/BL+NIR and Z100. The adjunct NIR increased the depths of cure about 1 mm compared to blue light alone. For the curing protocol, 10-min NIR significantly improved the top microhardness. However, 10-min NIR alone showed the lowest top microhardness. The temperature analysis showed NIR irradiation on UP5 for 10 min raised temperature about 12 oC and 7.1 oC at 2mm and 4mm depth in metal mold. The temperature raised was about 16.4 oC in teeth mold.
For the polymerization under tooth substances, the enamel + dentin bilyaer affected the blue light penetration most compare with enamel and dentin. The BL600 irradiation group was higher than others under enamel, dentin and enamel + dentin bilyaer.
According to these findings, NIR activated phosphors could be a new way to cure the dental composite deeply to enhance the degree of conversion. Accordingly, this study will provide some information for the future development in another direction of the dental composites.
論文目次 Abstract I
中文摘要 III
誌謝 V
Content VI
List of figures IX
List of Tables XI
List of Equation XI
Chapter 1 Introduction 1
1.1. Dental composite resins 1
1.1.1. Polymerization reaction of dental composite resin 4
1.1.2. Degree of conversion 6
1.1.3. Problems of dental composite resins 6
1.1.4. Depth of cure 8
1.2. Blue light curing system 8
1.2.1. Problems of blue light curing 10
1.3. Near infrared upconverted illumination 10
1.3.1. Near infrared 10
1.3.2. Upconversion phosphors 11
1.4. Application of UP in curing dental composites 12
1.5. Motivation and objectives 13
Chapter 2 Materials and methods 14
2.1. NIR laser 15
2.2. Upconversion phosphors preparation and characterization 16
2.3. Preparation of UP tuned composite resin 16
2.4. Effect of UP size on composite polymerization. 17
2.5. Effects of irradiation protocol on composite polymerization 20
2.6. Effects of UP ratio on composite polymerization 21
2.6.1. Microhardness at irradiated surface 22
2.6.2. Microhardness along depth 22
2.6.3. Depth of cure 22
2.7. Temperature analysis 24
2.8. Effect of resin degree of conversion through the tooth substances by UP composite. 26
2.8.1. Power decay 26
2.9. Data analysis 27
Chapter 3 Results 28
3.1. Electric current and NIR power relationship 28
3.2. The characteristic of UP 29
3.3. Effect of different UP size on composite polymerization. 32
3.4. Effects of irradiation protocol on composite polymerization 32
3.5. Effects of UP ratio on composite polymerization 33
3.5.1. Microhardness at irradiated surface 33
3.5.2. Microhardness along depth 34
3.5.3. Depth of cure 37
3.6. Temperature analysis 38
3.7. Effect of resin degree of conversion through the tooth substances by UP composite. 40
3.7.1. Power decay 42
3.7.2. Under enamel 42
3.7.3. Under dentin 43
3.7.4. Under enamel + dentin bilayer 44
Chapter 4 Discussions 45
Chapter 5 Conclusions 50
References 51
參考文獻 1. Moszner N, Salz U. Recent developments of new components for dental adhesives and composites. Macromol Mater Eng 2007;292:245-71.
2. Craig RG, Power JM. RESTORATIVE DENTAL MATERIALs; 2002.
3. Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater 2013;29:139-56.
4. Stansbury JW. Curing dental resins and composites by photopolymerization. J Esthet Dent 2000;12:300-8.
5. Hadis MA, Shortall AC, Palin WM. Competitive light absorbers in photoactive dental resin-based materials. Dent Mater 2012;28:831-41.
6. Mills LF. Status report: dental visible light-curing units. Council on Dental Materials, Instruments, and Equipment. J Am Dent Assoc 1982;104:505.
7. Ogunyinka A, Palin WM, Shortall AC, Marquis PM. Photoinitiation chemistry affects light transmission and degree of conversion of curing experimental dental resin composites. Dent Mater 2007;23:807-13.
8. Imazato S, Tarumi H, Kobayashi K, Hiraguri H, Oda K, Tsuchitani Y. Relationship between the degree of conversion and internal discoloration of light-activated composite. Dent Mater J 1995;14:23-30.
9. Silikas N, Eliades G, Watts DC. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater 2000;16:292-6.
10. Dewaele M, Truffier-Boutry D, Devaux J, Leloup G. Volume contraction in photocured dental resins: the shrinkage-conversion relationship revisited. Dent Mater 2006;22:359-65.
11. Daronch M, Rueggeberg FA, De Goes MF. Monomer conversion of pre-heated composite. J Dent Res 2005;84:663-7.
12. Li J, Li H, Fok AS, Watts DC. Multiple correlations of material parameters of light-cured dental composites. Dent Mater 2009;25:829-36.
13. Shin DH, Rawls HR. Degree of conversion and color stability of the light curing resin with new photoinitiator systems. Dent Mater 2009;25:1030-8.
14. Pazin MC, Moraes RR, Goncalves LS, Borges GA, Sinhoreti MA, Correr-Sobrinho L. Effects of ceramic thickness and curing unit on light transmission through leucite-reinforced material and polymerization of dual-cured luting agent. J Oral Sci 2008;50:131-6.
15. Komori PC, de Paula AB, Martin AA, Tango RN, Sinhoreti MA, Correr-Sobrinho L. Effect of light energy density on conversion degree and hardness of dual-cured resin cement. Oper Dent 2010;35:120-4.
16. Ilie N, Hickel R. Quality of curing in relation to hardness, degree of cure and polymerization depth measured on a nano-hybrid composite. Am J Dent 2007;20:263-8.
17. Soares LE, Martin AA, Pinheiro AL, Pacheco MT. Vicker's hardness and Raman spectroscopy evaluation of a dental composite cured by an argon laser and a halogen lamp. J Biomed Opt 2004;9:601-8.
18. Ferracane JL. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater 1985;1:11-4.
19. Kopperud HM, Johnsen GF, Lamolle S, Kleven IS, Wellendorf H, Haugen HJ. Effect of short LED lamp exposure on wear resistance, residual monomer and degree of conversion for Filtek Z250 and Tetric EvoCeram composites. Dent Mater 2013;29:824-34.
20. Watts DC, Amer OM, Combe EC. Surface hardness development in light-cured composites. Dent Mater 1987;3:265-9.
21. Neves AD, Discacciati JA, Orefice RL, Jansen WC. [Correlation between degree of conversion, microhardness and inorganic content in composites]. Pesqui Odontol Bras 2002;16:349-54.
22. Chung KH, Greener EH. Correlation between degree of conversion, filler concentration and mechanical properties of posterior composite resins. J Oral Rehabil 1990;17:487-94.
23. Taylor MJ, Lynch E. Microleakage. J Dent 1992;20:3-10.
24. Fung EY, Ewoldsen NO, St Germain HA, Jr., Marx DB, Miaw CL, Siew C, et al. Pharmacokinetics of bisphenol A released from a dental sealant. J Am Dent Assoc 2000;131:51-8.
25. Van Landuyt KL, Nawrot T, Geebelen B, De Munck J, Snauwaert J, Yoshihara K, et al. How much do resin-based dental materials release? A meta-analytical approach. Dent Mater 2011;27:723-47.
26. Czasch P, Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig 2013;17:227-35.
27. Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G, Ristic M. Degree of conversion and temperature rise during polymerization of composite resin samples with blue diodes. J Oral Rehabil 2001;28:586-91.
28. DeWald JP, Ferracane JL. A comparison of four modes of evaluating depth of cure of light-activated composites. J Dent Res 1987;66:727-30.
29. Tsai PC, Meyers IA, Walsh LJ. Depth of cure and surface microhardness of composite resin cured with blue LED curing lights. Dent Mater 2004;20:364-9.
30. Alrahlah A, Silikas N, Watts DC. Post-cure depth of cure of bulk fill dental resin-composites. Dent Mater 2014;30:149-54.
31. Neumann MG, Schmitt CC, Ferreira GC, Correa IC. The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dent Mater 2006;22:576-84.
32. Price RB, Ehrnford L, Andreou P, Felix CA. Comparison of quartz-tungsten-halogen, light-emitting diode, and plasma arc curing lights. J Adhes Dent 2003;5:193-207.
33. Stahl F, Ashworth SH, Jandt KD, Mills RW. Light-emitting diode (LED) polymerisation of dental composites: flexural properties and polymerisation potential. Biomaterials 2000;21:1379-85.
34. Rueggeberg FA, Blalock JS, Callan RS. LED curing lights--what's new? Compend Contin Educ Dent 2005;26:586, 8, 90-1.
35. Peutzfeldt A, Sahafi A, Asmussen E. Characterization of resin composites polymerized with plasma arc curing units. Dent Mater 2000;16:330-6.
36. Kim JW, Jang KT, Lee SH, Kim CC, Hahn SH, Garcia-Godoy F. Effect of curing method and curing time on the microhardness and wear of pit and fissure sealants. Dent Mater 2002;18:120-7.
37. Rueggeberg FA. State-of-the-art: dental photocuring--a review. Dent Mater 2011;27:39-52.
38. Kelsey WP, 3rd, Blankenau RJ, Powell GL, Barkmeier WW, Cavel WT, Whisenant BK. Enhancement of physical properties of resin restorative materials by laser polymerization. Lasers Surg Med 1989;9:623-7.
39. Taira M, Okazaki M, Takahashi J. Studies on optical properties of two commercial visible-light-cured composite resins by diffuse reflectance measurements. J Oral Rehabil 1999;26:329-37.
40. Meniga A, Tarle Z, Ristic M, Sutalo J, Pichler G. Pulsed blue laser curing of hybrid composite resins. Biomaterials 1997;18:1349-54.
41. Price RB, Felix CM, Whalen JM. Factors affecting the energy delivered to simulated class I and class v preparations. J Can Dent Assoc 2010;76:a94.
42. Tirtha R, Fan PL, Dennison JB, Powers JM. In vitro depth of cure of photo-activated composites. J Dent Res 1982;61:1184-7.
43. Bagis YH, Baltacioglu IH, Kahyaogullari S. Comparing microleakage and the layering methods of silorane-based resin composite in wide Class II MOD cavities. Oper Dent 2009;34:578-85.
44. Leprince J, Devaux J, Mullier T, Vreven J, Leloup G. Pulpal-temperature rise and polymerization efficiency of LED curing lights. Oper Dent 2010;35:220-30.
45. Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol 1981;77:13-9.
46. Stepuk A, Mohn D, Grass RN, Zehnder M, Kramer KW, Pelle F, et al. Use of NIR light and upconversion phosphors in light-curable polymers. Dent Mater 2012;28:304-11.
47. Bouillaguet S, Caillot G, Forchelet J, Cattani-Lorente M, Wataha JC, Krejci I. Thermal risks from LED- and high-intensity QTH-curing units during polymerization of dental resins. J Biomed Mater Res B Appl Biomater 2005;72:260-7.
48. Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 2004;104:139-73.
49. Yin A, Zhang Y, Sun L, Yan C. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals. Nanoscale 2010;2:953-9.
50. Haase M, Schafer H. Upconverting nanoparticles. Angew Chem Int Ed Engl 2011;50:5808-29.
51. Shortall AC, Wilson HJ, Harrington E. Depth of cure of radiation-activated composite restoratives--influence of shade and opacity. J Oral Rehabil 1995;22:337-42.
52. Feilzer AJ, De Gee AJ, Davidson CL. Quantitative determination of stress reduction by flow in composite restorations. Dent Mater 1990;6:167-71.
53. Malhotra N, Mala K. Light-curing considerations for resin-based composite materials: a review. Part II. Compend Contin Educ Dent 2010;31:584-8, 90-1; quiz 92, 603.
54. Ferracane JL, Condon JR. Post-cure heat treatments for composites: properties and fractography. Dent Mater 1992;8:290-5.
55. Zach L, Cohen G. Pulp Response to Externally Applied Heat. Oral Surg Oral Med Oral Pathol 1965;19:515-30.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw