進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508201218080400
論文名稱(中文) 多孔性氧化鋁吸附二氧化碳之研究
論文名稱(英文) Study on CO2 adsorption by porous alumina
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 蘇雅雯
研究生(英文) Ya-Wen Su
學號 L46994027
學位類別 碩士
語文別 中文
論文頁數 122頁
口試委員 指導教授-陳燕華
口試委員-劉雅瑄
口試委員-顏富士
口試委員-余樹楨
中文關鍵字 二氧化碳  吸附  多孔性氧化鋁  胺根修飾  氧化鈣批覆 
英文關鍵字 CO2  adsorption  porous alumina  amine-modification  CaO-coating 
學科別分類
中文摘要 溫室氣體二氧化碳造成全球氣候變遷已愈演愈烈,CO2減量已成為刻不容緩的議題。因此尋求高效能封存或礦化二氧化碳的技術,將是CO2減量對策中的重要部分。其中,利用多孔性材料吸附二氧化碳以便回收再利用,是有效減量二氧化碳的方法之一。
故本研究希望:『利用多孔性氧化鋁、多孔性氧化鋁表面披覆CaO及胺根修飾加以吸附二氧化碳』。三種不同樣品的結晶相、表面形貌、比表面積分別以X光繞射分析儀、掃描式電子顯微鏡、比表面積分析儀加以量測。運用熱重-熱差分析儀(TG-DTA)從事二氧化碳吸/脫附實驗;並嘗試找出吸附二氧化碳最有效的影響因子;最後嘗試找出二氧化碳被吸附之機制。
利用X光繞射分析儀、掃描式電子顯微鏡、能量散佈能譜儀,確認樣品為多孔性氧化鋁;比表面積分析儀測得其比表面積為315 m2/g;利用TG-DTA從事二氧化碳吸/脫附實驗:多孔性氧化鋁在25°C 吸附二氧化碳效果較好。多孔性氧化鋁表面批覆氧化鈣後其比表面積約23 m2/g,在高溫750°C 時對二氧化碳有良好的吸附效果,它對二氧化碳的吸附量比純多孔性氧化鋁顯著;且多孔性氧化鋁表面批覆氧化鈣的比例越高,效果越好。而胺根改質後的多孔性氧化鋁,在低溫25°C 時吸附效果較好,且利用MEA 與EDA改質的多孔性氧化鋁效果優於3-CPAHCL改質的多孔性氧化鋁。
多次二氧化碳吸/脫附循環當中,多孔性氧化鋁在經多次循環後,吸附效果並未減弱;多孔性氧化鋁表面批覆氧化鈣的複合物,則隨著時間增加吸附效率降低,表面披覆的CaO比例越高,越能有效減緩吸附效率的衰減。而胺根改質後的多孔性氧化鋁,在多次循環後,吸附效果也跟者減弱,以3-CPAHCL改質過後的再生性較好。
英文摘要 It is well known that carbon dioxide (CO2) has become an important global issue due to the continuous rise in CO2 emissions to the atmosphere and it induces the global climate change. Therefore, it is necessary to reduce CO2 concentration by storage or mineralization techniques from the current level. The adsorption of carbon dioxides onto porous materials for recycling is one of the effective reduction of carbon dioxides.
In this study, we use porous alumina, CaO-coating and amine-modification porous aluminas to capture CO2. The crystal structure, morphology, and specific surface area of porous alumina, CaO-coating and amine-modification porous aluminas are characterized by XRD, SEM, and BET measurements, respectively. The thermo-gravimetric and differential temperature analyzer (TG-DTA) is performed to investigate the CO2 adsorption/desorption onto these samples. The CO2 adsorption efficiency and mechanism on the porous alumina samples are also discussed.
The porous alumina is examined as κ-Al2O3 phase by XRD, SEM, and EDS results. Its specific surface area is 315 m2/g. The κ-Al2O3 has the maximum CO2 adsorption efficiency at temperatures of 25°C, which is proved from TG-DTA data. The CaO/κ-Al2O3 sorbent has the maximum adsorption efficiency at 750°C with a surface area of 23 m2/g. The result indicates that CaO/κ-Al2O3 has a better CO2 adsorption efficiency than that of κ-Al2O3, and it increases with an increase of CaO ratio. The amine-modification of κ-Al2O3 has a good CO2 adsorption capacity at 25°C, and MEA-EDA modification is better than that of 3-CPAHCL sample.
The CO2 adsorption performance of κ-Al2O3 has not declined after multiple adsorption/desorption cycles, however, the CO2 adsorption capacity of CaO/κ-Al2O3 has reduced. The higher ratio of CaO-coating slows down the attenuation of CO2 adsorption efficiency. After several CO2 adsorption/desorption cycles, the κ-Al2O3 with amine-modification has a worse CO2 adsorption efficiency, and that of 3-CPAHCL modification has better regeneration than that of MEA-EDA modified sample.
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VII
表目錄 XI
圖目錄 XIII
第一章 緒論 1
第二章 研究背景 5
2-1二氧化碳減量技術 5
2-1-1 封存 5
2-1-2 捕集 8
2-1-3 回收再利用 10
2-2吸附劑之選擇 10
2-2-1 多孔性氧化鋁 11
2-2-2 氧化鈣 13
2-3氧化鈣改質之研究 15
2-4 胺根改質之研究 17
2-5吸附理論 18
2-6等溫吸附曲線 19
第三章 實驗方法 25
3-1 實驗藥品與設備 25
3-1-1實驗藥品 25
3-1-2實驗設備 26
3-2 實驗流程 26
3-3 樣品製備與改質方法 28
3-3-1 多孔性氧化鋁之製備 28
3-3-2 CaO改質方法 28
3-3-3 3-CPAHCL胺根改質方法 30
3-3-4 MEA/EDA胺根改質方法 32
3-4 分析儀器原理 34
3-4-1 X光繞射儀 34
3-4-2 掃描式電子顯微鏡 34
3-4-3 能量散佈能譜儀 35
3-4-4 比表面積及孔徑分析儀 35
3-4-5 傅立葉轉換紅外線光譜儀 37
3-4-6 熱重-熱差分析儀 38
3-5 二氧化碳吸附/脫附實驗 40
3-5-1 多孔性氧化鋁之二氧化碳吸/脫附實驗 40
3-5-2 CaO/κ-Al2O3之二氧化碳吸/脫附實驗 43
3-5-3 胺根/κ-Al2O3之二氧化碳吸/脫附實驗 44
第四章 結果與討論 45
4-1 比表面積分析結果 45
4-2 X光繞射分析-反應前礦物相鑑定 52
4-2-1 κ-Al2O3之X光粉末繞射 52
4-2-2 CaO/κ-Al2O3之X光粉末繞射 53
4-2-3 CaO(100)之X光粉末繞射 54
4-3 多孔性氧化鋁特性分析 55
4-3-1 能量散佈能譜分析 55
4-3-2 掃描式電子顯微鏡分析 55
4-4 TG-DTA熱穩定分析 58
4-4-1 κ-Al2O3熱穩定分析 58
4-4-2 CaO(83)/κ-Al2O3熱穩定分析 60
4-4-3 CaO(93)/κ-Al2O3熱穩定分析 61
4-4-4 CaO(100)熱穩定分析 63
4-4-5 3CPA/κ-Al2O3熱穩定分析 64
4-4-6 M-E/κ-Al2O3熱穩定分析 65
4-5 二氧化碳吸附實驗 66
4-5-1 κ-Al2O3二氧化碳吸附實驗 66
4-5-2 CaO-83/κ-Al2O3二氧化碳吸附實驗 71
4-5-3 CaO-93/κ-Al2O3二氧化碳吸附實驗 73
4-5-4 CaO-100二氧化碳吸附實驗 76
4-5-5 3CPA/κ-Al2O3二氧化碳吸附之結果 78
4-5-6 M-E/κ-Al2O3二氧化碳吸附之結果 80
4-6 二氧化碳多循環吸脫附實驗 82
4-6-1 κ-Al2O3二氧化碳多循環吸脫附實驗 82
4-6-2 CaO/κ-Al2O3二氧化碳吸附多循環 84
4-6-3 胺根/κ-Al2O3二氧化碳多循環吸脫附實驗 87
4-7 物理混合CaO與κ-Al2O3對二氧化碳吸附實驗 89
4-8 二氧化碳吸附後XRD分析 91
4-8-1 CaO(83)/κ-Al2O3與二氧化碳反應後XRD 91
4-8-2 CaO(93)/κ-Al2O3與二氧化碳反應後XRD 93
4-8-3 CaO(100)與二氧化碳反應後XRD 95
4-9二氧化碳吸附後SEM分析 97
4-9-1 κ-Al2O3與二氧化碳反應前後SEM分析 97
4-9-2 CaO(100)與二氧化碳反應前後SEM分析 98
4-9-3 CaO(93)/κ-Al2O3與二氧化碳反應前後SEM分析 99
4-9-4 CaO(83)/κ-Al2O3與二氧化碳反應前後SEM分析 100
4-10 二氧化碳吸附後BET分析 101
4-11 FT-IR 檢測官能基 105
4-12 與前人文獻比較 109
4-12-1 κ-Al2O3吸附效果與前人文獻比較 109
4-12-2 CaO/κ-Al2O3吸附效果與前人文獻比較 109
4-12-3 胺根/κ-Al2O3吸附效果與前人文獻比較 110
第五章 結論 113
第六章 參考文獻 115
參考文獻 Auroux, A. and A. Gervasini, “Microcalorimetric study of the acidity and basicity of metal oxide surfaces”, The Journal of Physical Chemistry, 94, 6371-6379, 1990.

Arakawa, H., “Catalysis research of relevance to carbon management: Progress, challenges, and opportunities”, Chemical Reviews,101(4), 953-996, 2001.

Ametistova, L., J. Twidell, and J. Briden, “The sequestration switch: removing industrial CO2 by direct ocean absorption”, The Science of The Total Environment, 289, 213-223, 2002.

Alvarez, D., M. Pena, and A.G. Borrego, “Behavior of different calcium-based sorbents in a calcination/carbonation cycle for CO2 capture”, Energy & Fuels, 21(3), 1534-1542, 2007.

Addison, J., and E.E. McConnell, “A review of carcinogenicity studies of asbestos and non-asbestos tremolite and other amphiboles”, Regulatory Toxicology and Pharmacology, 52 , 187-199, 2008.

Berner, R.A., A.C. Lasaga, and Garrels R.M., ”The carbonate-silicate geochemical cycle and its effect on atmospheric carbon”, American Journal of Science, 291, 641-683, 1983.

Bodegom, B.V., J.A.R. van Veen, G.M.M. van Kessel, M.W.A. Sinnige-Nijssen, and H.C.M. Stuiver, “The action of solvents on coal at lowtemperatures: 2. Medium- and high-rank coals”, Fuel, 64(1), 59-63, 1985.

Bhaumik, A., and S. Inagaki, “Mesoporous titanium phosphate molecular sieves with ion-exchange capacity”, Journal of the American Chemical Society, 123(4), 691-696, 2001.

Boccaccini, D.N., C. Leonelli, M.R. Rivasi, M. Romagnoli, P. Veronesi, G.C. Pellacani, and A.R. Boccaccini, “Recycling of microwave inertised asbestos containing waste in refractory materials”, Journal of the European Ceramic Society, 27, 1855-1858, 2007.

Bonenfant, D., L. Kharoune, Se´bastien Sauve´, R. Hausler, P. Niquette, M. Mimeault, and M. Kharoune, “Molecular analysis of carbon dioxide adsorption processes on steel slag oxides”, International Journal of Greenhouse Gas Control, 3(1), 20-28, 2009.

Blamey, J., E.J. Anthony, J. Wang, and P.S. Fennell, “The Calcium Looping Cycle for Large-Scale CO2 Capture”, Progress in Energy and Combustion Science, 36, 260-279, 2010.

Beuls, A., C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic, and P. Ruiz, “Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst”, Applied Catalysis B: Environmental 113-114, 2-10, 2012.

Croiset, E. and K.V. Thambimuthu, Proceedings of the Fourth International Conference of Greenhouse Gas Control Technologies, Interlaken, Switzerland, August 30-September 2, 1998.

Drever, J.I. and L.L. Stillings, “The role of organic acids in mineral weathering”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120, 167-181, 1997.

Damen, K.J., M.V. Troost, A.P.C. Faaij, and W.C. Turkenburg, “A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies”, Progress in Energy and Combustion Science, 32(2), 215-246, 2006.

Dantas, T.L.P., S.M. Amorim, F.M.T. Luna, I.J. Silva Jr., D.C.S. de Azevedo, A.E. Rodrigues, and R.F.P.M. Moreira, “Adsorption of Carbon Dioxide onto Activated Carbon and Nitrogen-Enriched Activated Carbon: Surface Changes, Equilibrium, and Modeling of Fixed-Bed Adsorption”, Separation Science and Technology, 45, 73-84, 2010.

Eric, H.O., R.G. Sigurdur, and M. Juerg, “Mineral Carbonation of CO2”, Elements, 4, 333-337, 2008.

Feng, B., W. Liu, X. Li, and H. An, “Overcoming the Problem of Loss-in-Capacity of Calcium Oxide in CO2 Capture”, Energy & Fuels, 20, 2417-2420, 2006.

Feng, B., A. Hui, T. Eddie, “Screening of CO2 Adsorbing Materials for Zero Emission Power Generation Systems”, Energy & Fuels, 21(2), 426-434, 2007.

Gross, H.L. and W. Mader, “On the Crystal Structure of -Alumina”, Chemical Communications, 55-56, 1997.

Gupta, H. and L.S. Fan, “Carbonation-Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas”, Industrial & Engineering Chemistry Research, 41, 4035-4042, 2002.

Gray, M.L., Y. Soong, K.J. Champagne, J. Baltrus, R.W. Stevens, Jr, P. Toochinda, and S.S.C. Chuang, “CO2 capture by amine-enriched fly ash carbon sorbents”, Separation and Purification Technology, 35, 31-36, 2004.

Gibbins, J. and H. Chalmers, “Carbon capture and storage”, Energ Policy 36, 4317-4322, 2008.

Gregg, S.J. and K.S.W. Sing , “Adsorption, Surface Area and Porosity”, Academic Press Incorporated, London, 1982.

Hogetsu, D. and S. Miyachi, “Role of carbonic anhydrase in photosynthetic CO2 fixation in Chlorella”, Plant Cell Physiology, 20, 747-756, 1979.

Hart, L.D. and E. Lense, Alumina Chemicals Science and Technology Handbook, The American Ceramic Society Inc. Westerville, Ohio, 1990.

Handa, N. and T. Ohsumi, Direct ocean disposal of carbon dioxide, 1st Edition, Tokyo: TERRAPUR , 2003.

House, K.Z., D.P. Schrag, C.F. Harvey, and K.S. Lackner, “Permanent carbon dioxide storage in deep-sea sediments.”, Proceedings of the National Academy of Sciences, 103(33), 12291-12295, 2006.

Habashi, F., “Asbestos”, Encyclopedia of Materials: Science and Technology, 1-5, 2008.

Iyer, M.V., H. Gupta, B.B. Sakadjian, and L.S. Fan, “Multicyclic Study on the Simultaneous Carbonation and Sulfation of high reactivity CaO”, Industrial & Engineering Chemistry Research, Vol.43, 3939-3947, 2004.

Kojima, T., A. Nagamine, and S. Uemiya, “ABSORPTION AND FIXATION OF CARBON DIOXIDE BY ROCK WEATHERING”, Energy Conversion and Management, 38, 461-466, 1997.

Liu, P. and J. Skogsmo, “Space-Group Determination and Structure Model for κ-Al2O3 by Convergent-Beam Electron Diffraction(CBED)”, Acta Crystallographica B47, 425-433, 1991.

Lackner, K.S., C.H. Wendt, D.P. Butt, E.L. Joyce, and Jr., D.H. Sharp, “ Carbon dioxide disposal in carbonate minerals”, Energy (Oxford), 20(11), 1153-1170, 1995.

Leal, O., C. Bolivar, C. Ovalles, J.J. Garcia, and Y. Espidel, “Reversible adsorption of carbon dioxide on amine surface-bonded silica gel”, Inorganica Chimica Acta 240, 183-189, 1995.

Lysikov, A.I., A.N. Salanov, and A.G. Okunev, “Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles”, Industrial & Engineering Chemistry Research, 46(13), 4633-4638, 2007.

Li, Z.S., N.S. Cai, and E. Croiset, “Process Analysis of CO2 Capture from Flue Gas Using Carbonation/Calcination Cycles”, Aiche Journal, 54, 1912-1925, 2008.

Li, Q., Z.S. Wu, and X.C. Li, “Prediction of CO2 leakage during sequestration into marine sedimentary strata”, Energy Conversion and Management, 50, 503-509, 2009.

Li, Z.S., F. Fang, X.Y. Tang, and N.S. Cai, “The effect of temperature on the carbonation reaction of CaO with CO2”, Energy Fuels, 26(4), 2473-2482, 2012.

Moet, A. and A. Akelah, “Polymer-clay nanocomposites:polystyrene grafted onto montmorillonite interlayers”, Materials Letters, 18, 97-102, 1993.

Martinsen, D., J. Linssen, P. Markewitz, and S. Vögele, “CCS: A future CO2 mitigation option for Germany-A bottom-up approach”, Energy Policy, 35 , 2110-2120, 2007.

Martavaltzi, C.S. and A.A. Lemonidou, “Development of new CaO based sorbent materials for CO2 removal at high temperature”, Microporous and Mesoporous Materials, 110, 119-127, 2008.

Manovic, V., E.J. Anthony, D. Loncarevic, “CO2 looping cycles with CaO-based sorbent pretreated in CO2 at high temperature”, Chemical Engineering Science, 64, 3236-3245, 2009.

Rau, G.H. and K. Caldeira, “Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate”, Energy Conversion and Management, 40, 1803-1813, 1999.

Reddy, E.P. and P.G. Smirniotis, “High-temperature sorbents for CO2 made of alkali metals doped on CaO supports”, Journal of Physical Chemistry B, 108(23), 7794-7800, 2004.

Stumpf, H.C., A.S. Russel, J.W. Newsome, and C.M. Tucker, “Thermal Transformations of Aluminas and Their Hydrates”, The Journal of Physical Chemistry, 57, 84-88, 1953.

Sing, K.S.W., D.H. Everett, R.A.W. Hual, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska,“Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure and Applied Chemistry, 54(11), 2201-2218, 1982.

Stiller, C., A.M. Svensson, S. Møller-Holst, U. Bünger, K.A. Espegren, Ø.B. Holm, and D.M. Ruthven, “Principles of adsorption and adsorption Process”, John Wiley &Sons, Inc., New York, 1984.

Santos, E.T., C. Alfonsin, A.J.S. Chambel, A. Fernandes, A.P.S. Dias, C.I.C. Pinheiro, and M.F. Ribeiro, “Investigation of a Stable Synthetic Sol-Gel CaO Sorbent for CO2 Capture”, Fuel, 94, 624-628, 2012.

Tomishige, K., T. Sakaihori, S. Sakai, and K. Fujimoto, “ Dimethyl carbonate synthesis by oxidative carbonylation on activated carbon supported CuCl2 catalysts: catalytic properties and structural change”, Applied Catalysis, 181(1), 95-102, 1999.

Teir, S., R. Kuusik, C.J. Fogelholm, and R. Zevenhoven, “Production of magnesium carbonates from serpentinite for long-term storage of CO2”, International Journal of Mineral Processing,, 85(1-3),1-15, 2007.

Tomasgård, A., “Options for CO2-lean hydrogen export from Norway to Germany”, Energy, 33, 1623-1633, 2008.

Thiruvenkatachari, R., S. Su, H. An, and X.X. Yu, “Post combustion CO2 capture by carbon fibre monolithic adsorbents”, Progress in Energy and Combustion Science, 35, 438-455, 2009.

Teir, S., S. Eloneva, C. Fogelholm, and R. Zevenhoven, “Fixation of carbon dioxide by producing hydromagnesite from serpentinite”, Applied Energy, 86, 214-218, 2009.

Vuorinen, S. and L. Karlsson, “Phase transformation in chemically vapour-deposited κ-alumina”, Thin Solid Films, 214, 132-143, 1992.

Wefers, K., “Nomenclature, Preparation, and Properties of Aluminum Oxides, Oxide Hydroxides, and Trihydroxides, in Alumina Chemicals”, L.D. Hart Ed., The American Ceramic Society, Ohio, 1990.

Wang, Z.L., J. Diao, J.F. Wang, Y. Jin, and X.D. Peng, “Study on synergy effect in dimethyl ether synthesis from syngas”, Chinese Journal of Chemical Engineering, 9(4), 412-416, 2001.

Wilson, R., E.E. McConnell, M. Ross, C.W. Axten, and R.P. Nolan, “Risk assessment due to environmental exposures to fibrous particulates associated with taconite ore”, Regulatory Toxicology and Pharmacology, 52, 232-245, 2008.

Wu, S.F., Q.H. Li, J.N. Kim, and K.B. Yi, “Properties of a Nano CaO/Al2O3 CO2 Sorbent”, Industrial & Engineering Chemistry Research, 47, 180-184, 2008.

Wang, X., V. Schwartz, J.C. Clark, X. Ma, S.H. Overbury, X. Xu, and C. Song, “Infrared Study of CO2 Sorption over “Molecular Basket” Sorbent Consisting of Polyethylenimine -Modified Mesoporous Molecular Sieve”, The Journal of Physical Chemistry C, 113, 7260-7268, 2009.

Yourdshahyan, Y., C. Ruberto, M. Halvarsson, L. Bengtsson, V. Langer, and B.I. Lundqvist, “Theoretical Structure Determination of a Complex Material:κ-Al2O3”, Journal of the American Ceramic Society, 82, 1365-80, 1999.

Yong, Z., V. Mata, and A.E. Rodrigues, “Adsorption of carbon dioxide at high temperature-a reiew”, Separation Purification Technology, 26, 195-205, 2002.

Yanagisawa, K., T. Kozawa, A. Onda, M. Kanazawa, J. Shinohara, T. Takanami, and M. Shiraishi, “A novel decomposition technique of friable asbestos by CHClF2-decomposed acidic gas”, Journal of Hazardous Materials, 163, 593-599, 2009.

Zelenak, V., D. Halamova, L. Gaberova, E. Bloch, and P. Llewellyn, “Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties”, Microporous and Mesoporous Materials, 116, 358-364, 2008.

林國海,以水熱法探討奈米級α-Al2O3披覆氫氧基之研究,國立成功大學資源工程研究所碩士論文,2005。

邱昱維,α-Al2O3粉末披覆γ-氨丙基三乙氧基矽烷耦合劑之研究,國立成功大學資源工程研究所碩士論文,2005。

陳奕岑,以改質氧化鈣捕獲二氧化碳氣體之循環再生能力研究,國立交通大學環境工程研究所碩士論文,2008。

陳璽文,生物互動下的混獲與丟棄,國立中山大學經濟學研究所碩士論文,2010。

黃啟祥,林江財,“氧化鋁”,陶瓷技術手冊(下),中華民國產業科技發展協進會與中華民國粉末冶金協會出版,683-685,1994。

黃昭銘,表面醇胺化改質的吸附劑於二氧化碳的吸、脫附量測,工研技術研究院,2008。

程士豪,模擬煙道氣進行轉爐石碳酸化之研究,輔英科技大學環境工程與科學系碩士論文,2008。

董永財,關於地函與溫室效應相互影響之前衍研究,朝陽科技大學通識教育中心,第九期,179-186,2010。

楊昆原,κ-Al2O3微粒表面結構與CO2吸附,國立成功大學資源工程研究所碩士論文,2009。

劉韻萍,矽酸鹽礦石溶解之研究,國立台灣大學碩士論文,2001。

劉毅弘,二氧化碳新型吸附劑探討,工業污染防治,第111期,2009。

羅時芳,溫室氣體減量政策對產業發展之影響及因應對策,行政院經濟建設委員會,2006。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-12-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-12-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw