進階搜尋


下載電子全文  
系統識別號 U0026-2508201200242200
論文名稱(中文) 固體推進劑葯柱之結構完整性、可靠度與阻燃材料之分析
論文名稱(英文) Analysis of structural integrity, reliability, and thermal insulation materials of solid propellant grains
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 100
學期 2
出版年 101
研究生(中文) 朱宏達
研究生(英文) Hung-Ta Chu
學號 N98921153
學位類別 博士
語文別 英文
論文頁數 154頁
口試委員 指導教授-周榮華
口試委員-趙隆山
口試委員-苗君易
口試委員-簡來成
口試委員-吳宗信
中文關鍵字 固體火箭推進劑  泊松比  氧乙炔  安全係數  阻燃層基材 
英文關鍵字 solid propellant grain  Poisson’s ratio  oxyacetylene  safety factor  inhibitor 
學科別分類
中文摘要 本論文探討發動機藥柱在點火壓力與溫度負載下的結構完整性。固體火箭發動機是一個一次性使用、並且無法修復的複雜系統,內部包括了大量的高能物質,使發動機發射後,迅速地產生大量的氣體並推送飛彈到目標區。長久以來,固體火箭發動機的發展均著重於可靠度的問題,特別是可靠度設計,已經成為固體火箭發動機設計與製造過程中,不可或缺的部分。
由於固體火箭發動機在運作的過程中,會受許多因素的影響。例如高溫、高壓力、甚至於不同的溫度負載等,因固體火箭發動機作為一個推進系統與飛彈的主要部分,其安全性更形重要。因為固體火箭發動機包含典型的黏彈性材料,所以本論文藉由藥柱的機械鬆弛性能、線性黏彈性模型、線性黏彈性累積理論與等效時溫理論,及ANSYS軟體,進行其熱結構偶合與黏彈性分析,並得出主要結論內容如下:
改變發動機不同組件的厚度,會對於應力大小產生明顯的變化。當改變阻燃層與鋼殼的厚度時,發動機藥柱因點火負荷而產生的應力會減少地非常明顯,表示應力變化與泊松比的關係是非線性與不可忽略的。當藥柱由不可壓縮材料假設轉變成可壓縮材料假設時,承受點火負荷狀況下,其應力值會明顯地增加。
在分析藥柱的結構完整性時,其溫度負荷的影響是非常重要且不能忽略的。透過有效的數值模擬方法,並經由材料參數、溫度負荷與點火壓力負荷等條件,能成功地分析藥柱結構的完整性。
就近年來常被應用於發動機中作為阻燃層基材的有丁烯氰橡膠(nitrile butadiene rubber , NBR)、EPDM(ethylene propylene diene monomer)以及聚異戊二烯(polyisoprene)之阻燃能力而言,本文使用氧乙炔系統來測試V-44(當作對照組)、EPDM/KEVLAR(克維拉纖維)與I-58分析之。結果顯示,當熱通量小於280W/cm2時,V-44的耐燒蝕率比EPDM/KEVLAR(克維拉纖維)與I-58要好,而當熱通量大於350W/cm2時,則V-44、EPDM/KEVLAR(克維拉纖維)與I-58的耐燒蝕率差異性就比較沒有那麼明顯。而在燒蝕的表現上,I-58則都比V-44與EPDM/KEVLAR要來得差。然而,在實際應用上,由於I-58於藥柱與鋼殼間有較好的粘著性,常被應用於短程飛彈上;相較之下, EPDM/KEVLAR則單純著重於應用在飛機與軍事上的阻燃材料用途。
英文摘要 The study investigates the structural integrity of the solid propellant grains under temperature and pressure loadings. During the development of solid propellant grain, the reliability of a solid propellant grain is critical. A solid propellant grain is a complicated system, which is used for only a single time and unable to be restored. The missile motor also contains a large quantity of high-energy substances, which can, within a short time after launch, generate a great deal of gas to impel the missile rapidly.
Because of the effect of factors such as high temperature, high pressure, adverse temperature loadings and so forth, the safety of a solid propellant grain, which serves as the propulsion system and the key component of a solid missile, is extraordinary important. By using propellant mechanical relaxation, linear viscoelastic models, linear viscoelastic accumulative theory, and time-temperature equivalent theory, and software ANSYS, the viscoelastic material behavior and safety factors of the propellant are examined. Key observations are as follows:
When changing the thickness of inhibitor and steel case, the stress of propellant grains under ignition loading decreased significantly. The stress variation versus thickness of inhibitor and steel case is nonlinear and cannot be neglected. Also, the transient effect is important for structural completeness of the solid propellant grains under the ignition loading conditions. There is an apparent difference among the stresses of different Poisson’s ratios. When changing the property of propellant grains from compressible into incompressible, the stress and strain of propellant grains under ignition pressurization loading decreased significantly. The stress variation versus Poisson’s ratio is nonlinear and cannot be neglected.
The thermal loading history influence is significant for structural integrity of solid propellant grains and can be used to tune the safety factor to a safer range.
The performance of the presently most used thermal insulaton materials, V-44 (used as control), EPDM/Kevlar, and I-58 are examined by the oxyacetylene ablation performance test system for its simplicity. The results show that when the heat flux is smaller than 280 W/cm2, the erosion resistance rate of V-44 is better than those of EPDM/Kevlar and I-58. However, when the heat flux is over 350 W/cm2, the difference in their erosion resistance rates is less obvious. Furthermore, the ablation performance of I-58 is worse than those of V-44 and EPDM/Kevlar. However, I-58 is better for the application of short-distance missiles since it provides better bonding between the propellant and the motor case. In contrast, EPDM/Kevlar exhibits better results for the applications as insulators in aerospace and military installations.
論文目次 中文摘要 III
Abstract V
Acknowledgements VII
Contents VIII
List of tables XI
List of figures XII
Nomenclature XVI
Chapter One Introduction 1
1.1 Motivation 3
1.2 Objectives 5
1.3 Dissertation Organization 6
Chapter Two Literature Survey 8
Chapter Three Finite Element Modeling 23
3.1 Finite Element Modeling 23
3.1.1 Modeling and governing equation 25
3.2 Viscoelasticity Constitutive Theory 29
3.2.1 Viscoelasticity phenomena 31
3.2.2 Creep 32
3.2.3 Relaxation 33
3.2.4 Maxwell method 35
3.2.5 Voigt model 37
3.2.6 Generalized Maxwell method 37
3.3 Equivalent Time-Temperature Model 39
3.3.1. Master curve construction 40
Chapter Four Stress Behavior of Propellant Grains Under Mechanical Loadings 50
4.1 Description of the Mechanical loadings 50
4.2 Pressure Rising and Temperature Changes at Firing 50
4.2.1 Effect of Diverse Thickness of Steel Case 51
4.3 Discussion on the Necessity of Incompressible and Compressible 63
Analysis
4.3.1 Effect of Incompressible Material on Stress Distribution 63
under Pressurized Loading
4.3.2 Effect of Poisson’s Ratio on Stress Distribution under 67
Pressurized Loading
4.4 The Effect of Temperature Changes 71
4.4.1 Temperature Loading Period of Solid Propellant Grain 76
4.4.2 Determination of the Safety Factor 78
4.4.2.1 Cooling profile case 1 78
4.4.2.2 Cooling profile case 2 79
4.4.2.2.1. The first temperature cooling stage from 75℃ to 25℃ 79
4.4.2.2.2. The second temperature cooling stage from 25℃ to -54℃ 82
4.4.2.3 Cooling profile case 3 82
4.4.2.4 Cooling profile case 4 83
4.4.2.5 Cooling profile case 5 83
4.4.2.6 Cooling profile case 6 83
4.4.2.7 Cooling profile case 7 84
4.4.3 Alternative Experimental Methodology 85
4.4.3.1 Specimens Fabrication 86
4.4.3.2 Experimental Results 88
4.4.4 Effect of diverse thickness of inhibitor on safety factor 90
Chapter Five Insulation Index Determination 92
5.1 Experimental Process 92
5.1.1 Materials and Specimens Fabrication 92
5.1.2 Equipment 94
5.1.2.1 Oxyacetylene flame flow system 94
5.1.3 Thermogravimetric analysis (TGA) 99
5.1.4 TGA method 100
5.2 Results and Discussion 100
5.2.1. Material characterization by TGA 100
5.2.2. Ablation behavior 103
Chapter Six Conclusions and Suggestions 111
6.1 Conclusions 111
6.2 Suggestions for future work 112
References 114
References appendix 130
參考文獻 [1] Svob, G. J., and Bills. K. W. Jr., “Predictive surveillance technique for air-launched rocket motors, ” Journal of Spacecraft and Rockets, Vol. 21 (2), pp. 162–167, 1984.
[2] Bills, K. W. Jr., “Structural design nomograph for thermal cycling of tactical rocket propellants, ” NWC Tech. Memo 3365, December 1977.
[3] Chyuan, S. W., “Life assessment of solid-propellant structure under thermal cycling (structure over test) using structural design nomograph, ” Proceedings of The Fifth ROC Symposium on Fracture Science, pp. 31–38, 1998.
[4] Christiansen, A. G., Layton, L. H., and Carpenter, R. L., “HTPB propellant aging, ” Journal of Spacecraft and Rockets, Vol. 18, pp.211–215, 1981.
[5] Chang, W. M., Chyuan, S. W., and Shieh, N. C., “Aging life prediction of polymer material structure using MSC=NASTRAN and Layton equation, ” MSC Taiwan Users Conference Proceedings, 1994.
[6] Chyuan, S. W., “Finite element simulation on solid-propellant structure under thermal shock loads, ” Proceedings of The 14th National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineers, Chung-Li, Taoyuan, Taiwan, R.O.C., pp. 100–107, December 1997.
[7] Chyuan, S. W., “Modeling of transient thermal mechanical response using finite element method (MSC=NASTRAN), ” MSC Taiwan Users’ Conference Proceedings, 1993.
[8] Chen, J. T., and Leu, S. Y., “Finite element analysis, design and experimental on solid propellant motors with a stress reliever, ” Finite Element in Analysis and Design, Vol. 29,pp.75-86, 1998.
[9] Davis, I. L., ”Microstructural propellant constitutive theory: polymeric binder mechanical properties based on molecular structure, ” JANNAF Structures and Mechanical Behavior Subcommittee Meeting, Hill AFB, Utah, October 1994.
[10] Xu, F., Aravas, N., and Sofronis, P., “Constitutive modeling of solid propellant materials with evolving microstructural damage, ” Journal of the Mechanics and Physics of Solids, Vol. 56, pp. 2050–2073, 2008.
[11] Peng, S. T. J., “Constitutive equations of solid propellant with volume extension under multiaxial loading - theory of extension and dewetting criterion, ” JANNAF Propulsion Meeting, Indianapolis, Indiana, February 1992.
[12] Shekhar, H., “Studies on final modulus of solid rocket propellants in uni-axial tensile testing curves, ” Science and Technology of Energetic Materials, Vol.71, Issue: 3-4, pp. 106-110.
[13] Cao, Y. P., Ji, X., Ying, F., and Xi, Q., ”Geometry independence of the normalized relaxation functions of viscoelastic materials in indentation, ” Philosophical Magazine,Vol.90, No.12, pp.1639–1655,2010.
[14] Cerri, S., Bohn, M. A., Menke, K.,and Galfetti, L., ”Ageing behaviour of htpb based rocket propellant formulations, ” Central European Journal of Energetic Materials, Vol.6, pp.149-165, 2009.
[15] Farris, R. J., and Schapery, R. A., “Development of a Solid Propellant Constitutive Theory, ” AFRPL-TR-73-50, June 1973.
[16] Park, S. W., Kim, Y. R. and Schapery, R. A., “A viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete, ” Mechanics of Materials, Vol.24, pp.241-255, 1996.
[17] Park, S. W., and Schapery, R. A., “ A viscoelastic constitutive model for particulate composites with growing damage, ” Int. J. Solids Structures, Vol.34, No.8, pp.931-947, 1997.
[18] Ha, K., and Schapery, R. A., “A three-dimensional viscoelastic constitutive model for particulate composites with growing damage and its experimental validation, ” Int. J. Solids Structures, Vol.35, Nos.26-27, pp.3497-3517, 1998.
[19] Park, S. W., and Schapery, R. A., “Methods of interconversion between linear viscoelastic material functions. Part I-a numerical method based on Prony series, ” International Journal of Solids and Structures, Vol. 36, pp.1653-1675, 1999.
[20] Schapery, R. A., and Park, S. W., “Methods of interconversion between linear viscoelastic material functions. Part II- an approximate analytical method, ” International Journal of Solids and Structures, Vol. 36, pp.1677-1699, 1999.
[21] Deng, k., Yang, J. H. Chen, F., Liu, C. F., Huang, W. W., and Li, H. B., ” On constitutive equation of htpb composite solid propellant, ” Journal of Astronautics, Vol.31, No.7, 2010.
[22] Swanson, S. R., and Christensen, L. W., “A constitutive formulation for high elongation propellants, ” Journal of Spacecraft and Rockets, Vol. 20, pp. 559-566, 1983.
[23] Chang, I. S.,” Propellant stress relief groove for the Titan IV SRMU, ” The Aerospace Corporation , CA 90245-4691, AEROSPACE REPORT NO. TR-93(3560)-2, November 1993.
[24] Özüpek, S., and Becker, E. B., “Constitutive modeling of high-elongation solid propellants, ” Journal of Engineering Materials and Technology, Vol. 114, Issue 1, pp.111-115, 1992.
[25] BergstrÖm, J. S., and Boyce, M. C., “Constitutive modeling of the large strain time-dependent behavior of elastomers, ” J. Mech. Phys. Solids., Vol. 46, pp. 931–954, 1998.
[26] Dienes, J. K., Zuo, Q. H., and Kershner, J. D., “Impact initiation of explosives and propellants via statistical crack mechanics, ” Journal of the Mechanics and Physics of Solids, Vol. 54, pp.1237–1275, 2006.
[27] Zhi, S. J., Sun, B., and Zhang, J. W., ” Numerical computation of mixed mode crack propagation in solid propellant, ” Journal of Solid Rocket Technology, Vol.34, No.1, pp.28-31, 2011.
[28] Kuo, K. K., Moreci, J., and Mantzaras, J., “Modes of crack formation in burning solid propellant, ” Journal of Propulsion and Power, Vol. 3, No. 1, pp. 19-25, January-February 1987.
[29] “Solid rocket motor performance analysis and prediction, ” NASA SP-8039, May 1971 (N72-18785).
[30] Caroline, P. H., and Joseph, D. S., “The internal flow modeling of a simulated solid propellant-liner debond using Loci-CHEM, ” 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 25-28 July 2010, Nashville, TN, AIAA Paper No. 2010-7164.
[31] Huang, W., and Xing, Y., ”Mechanical property prediction method for a HTPB propellant aging, ” 43th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 8-11 July 2007, Cincinnati, OH, AIAA Paper No. 2007-5769.
[32] Argyris, J. H., Vaz, L. E., and Willam, K., “Integrated finite element analysis of coupled thermoviscoplastic problems, ” J. Thermal Stresses, Vol. 4, pp. 121-153, 1981.
[33] Jana, M. K., Renganathan, K., and Rao, G. V., “A method of non-linear viscoelastic analysis of solid propellant grains for pressure load, ” Computers & Structures, Vol. 52. No. I. pp. 61-67. 1994.
[34] Zocher, M. A., Groves, S. E., and Allen, D. H., “A three-dimensional finite element formulation for thermoviscoelastic orthotropic media, ” International Journal for Numerical Methods in Engineering, Vol.40, pp.2267-2288, 1997.
[35] Sankaran, G. V., and Jana, M. K., “Thermoviscoelastic analysis of axisymmetric solid propellant grains, ” AIAA/SAE 11th Propulsion Conference AIAA Paper No. 75-1343,1975.
[36] Zhang, B., and Liu, W., ”Thermal-structure coupling numerical simulation of a special-type plug, ” Advanced Materials Research, Vols. 217-218, pp. 1510-1515, 2011.
[37] Lajczok, M. R., “Effective propellant modulus approach for solid rocket motor ignition structural analysis, ” Computers & Structures, Vol. 56. No. I, pp. 101-104, 1995.
[38] Jung, G. D., Youn, S. K., and Kim, B. K..,” A three-dimensional nonlinear viscoelastic constitutive model of solid propellant, ” International Journal of Solids and Structures, Vol. 37, pp.4715-4732, 2000.
[39] Fritzson, D.,” A three-dimensional finite strain constitutive theory for elastomer composites, ” Computers & Structures, Vol.33, No.5, pp.1267-1287, 1989.
[40] Canga, M. E., Becker, E. B. and Özüpek, S., “Constitutive modeling of viscoelastic materials with damage-computational aspects, ” Computer Methods in Applied Mechanics and Engineering, Vol. 190, No. 15-17, pp. 2207-2226, 2001.
[41] Jeremic, R., ”Some aspects of time-temperature superposition principle applied for predicting mechanical properties of solid rocket propellants, ” Propellants, Explosives, Pyrotechnics, Vol. 24, pp.221-223, 1999.
[42] Lu, Y. C., and Kuo, K. K., “Modeling and numerical simulation of combustion process inside a solid-propellant crack, ” Propellants, Explosives, Pyrotechnics, Vol.19, pp.217-226 , 1994.
[43] Özüpek, Ş.,” Computational procedure for the life assessment of solid rocket motors, ” Journal of Spacecraft and Rockets, Vol. 47, No. 4, July–August, pp.639-648, 2010.
[44] 任國周,“固體火箭發動機結構可靠性計算方法分析” 推進技術, 1995年第01期,41-46頁。
[45] 劉勇瓊,汪亮,“隨機有限元法及噴管擴張段結構可靠性分析”,固體火箭技術,1997年第20期, 31-35頁。
[46] 陳順祥,陽建紅, 王本華,“燃燒室壓強隨機分布的模擬與響應”,固體火箭技術, 1998年第21期, 20-25頁。
[47] 陳正宗,李清國,林信立,“葯柱累積破壞之應用-壽限評估”,中山科學研究院新新季刊,1989年第17期,155-163頁。
[48] Montesano, J., Kamran, B., Greatrix, D. R., and Zouheir, F., “Internal chamber modeling of a solid rocket motor: Effects of coupled structural and acoustic oscillations on combustion,” Journal of Sound and Vibration, Vol. 311, pp.20–38, 2008.
[49] Gottlieb, J. J., and Greatrix, D. R., “Numerical study of the effects of longitudinal acceleration on solid rocket motor internal ballistics, ” Journal of Fluids Engineering, Vol. 114, pp. 404–410, 1992.
[50] Greatrix, D. R.,” Parametric analysis of combined acceleration effects on solid propellant combustion, ” Canadian Aeronautics and Space Journal, Vol. 40, pp. 68–73, 1994.
[51] Gany, A., and Aharon, I., “Internal ballistics considerations of nozzle rocket motors, ” Journal of Propulsion and Power, Vol. 15, No. 6, pp. 866-873, November-December, 1987.
[52] Greatrix, D. R., and Harris, P. G., ”Structural vibration considerations for solid rocket internal ballistics modeling, ” AIAA/ASME/SAE/ASEE 36th Joint Propulsion Conference, Huntsville, AL, USA, AIAA Paper No. 2000-3804, 2000.
[53] Melcher, J. C., and Rodney, L. B., and Herman, K., “Combustion of aluminum particles in solid-rocket motor flows, ” Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, 1999, pp.723-747.
[54] Uluntsev, Y. G., and Merkulov, A. A., “Numerical calculation of pressure in a perforated well under a propellant charge burning, ” Journal of Mining Science, Vol. 43, No. 6, pp.592-599, 2007.
[55] Solid propellant grain structural integrity analysis, NASA, SP 8073, 1973.
[56] Zhang, T., and Sun, B., “Numerical computation of solid rocket motor insulation layer temperature by finite element method, ” Journal of Aerospace Power. Vol. 24, pp. 1407-1412, 2009.
[57] G. Püskülcü, and Ulas, A.,” 3-D grain burnback analysis of solid propellant rocket motors: Part 1 – ballistic motor tests, ” Aerospace Science and Technology 12, pp. 579–584, 2008.
[58] G. Püskülcü, and Ulas, A.,” 3-D grain burnback analysis of solid propellant rocket motors: Part 2 – modeling and simulation, ” Aerospace Science and Technology 12, pp. 585-591, 2008.
[59] Fitzgerald, J. E., and Hufferd, W. L., Handbook for the engineering structural analysis of solid propellants, 214. CPIA Publications, 1971.
[60] Renganathan, K., Nageswara, R. B., and Jana, M. K, “Failure pressure estimations on a solid propellant rocket motor with a circular perforated grain, ” International Journal of Pressure Vessels and Piping, Vol. 76, pp.955–963, 1999.
[61] Lee, E. H., “Stress analysis in viscoelastic bodies, ” Q Appl. Math. Vol. 13, pp.183–90, 1955–1956.
[62] Schapery R. A., “Two simple approximate methods of Laplace transform inversion for viscoelastic stress analysis, ” California Institute Technical Report, SM 61-23, Graduate Aeronautical Laboratories, 1961.
[63] Renganathan, K., Nageswara, R. B., and Jana, M.K, “An efficient Axisymmetric hybrid-stress-displacement formulation for compressible/nearly incompressible material, ” International Journal of Pressure Vessels and Piping, Vol. 77, pp.651-667, 2000 .
[64] Anderson, J. M., “A finite difference method based on energy principles for stress analysis of elastic solids, ” AIAA paper No. 66-175, AIAA 6th Solid Propellant Rocket Conference, Washington, DC, February 1965.
[65] Hermann, L. R., and Toms, R. M., “A reformulation of the elastic field equations in terms of displacements valid for all admissible values of Poisson’s ratio, ” J. Appl. Mech. Vol. 31, pp.140–141, 1964.
[66] Herrmann, L. R., “Elasticity equations for incompressible and nearly incompressible materials by a variational theorem, ” AIAA Journal, Vol. 3, No. 10, pp. 1886–1900, 1965 .
[67] Negaard, G., “Non-linear finite element analysis of viscoelastic materials, ” ADA361168, 1998.
[68] Tsui, Y. C., and Clyne, T. W., “An analytical model for predicting residual stresses in progressively deposited coatings-Part 1, ” Planar geometry, Thin Solid Films, Vol. 306, pp. 23–33, 1997.
[69] Jeong, J. H., Lee, S. Y., Lee, W. S., Baik, Y. J., and Kwon, D., “Mechanical analysis for crack-free release of chemical-vapor-deposited diamond wafers, ” Diamond Relat. Mater. Vol.11, pp.1597–1605, 2002.
[70] O¨ zel, A., Ucar, V., Mimaroglu, A., and Calli, I., “Comparison of the thermal stresses developed in diamond and advanced ceramic coating systems under thermal loading, ” Mater. Des. 21, pp.437–440, 2000.
[71] Sarikaya, O., and Celik, E., “Effects of residual stress on thickness and interlayer of thermal barrier ceramic MgO–ZrO2 coatings on Ni and AlSi substrates using finite element method, ” Mater. Des. 23, pp. 645–650, 2002.
[72] Ellchi, A., “Effects of pressure, initial temperature, and propellant ingredients on flame-spreading into a hole, ” Combustion and flame, Vol.108, pp. 397-407, 1997 .
[73] Schrökder, R., “Influences on development of thermal and residual stresses in quenched steel cylinders of different dimensions, ” Journal of Material Science and Technology, Vol.1, pp.754-764, 1985.
[74] Fletcher, A. J, and Lewis, C., “Effect of free edge on thermal stresses in quenched steel plates, ” Journal of Material Science and Technology Vol.1, pp.780-785, 1985.
[75] Kamamato, S., Nihimori, T., and Kinoshita, S., “Analysis of residual stress and distortion resulting from quenching in large low-alloy steel shafts, ” Journal of Material Science and Technology, Vol.1, pp.798-804, 1985.
[76] Sen, S., Aksakal, B., and Ozel, A., “Transient and residual thermal stresses in quenched cylindrical bodies, ” International Journal of Mechanical Sciences, No.42, pp. 2013-2029, 2000.
[77] Haider, J., Rahman, M., Corcoran, B., and Hashmi, M. S. J., “Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis, ” Journal of Materials Processing Technology , Vol. 168, pp. 36–41, 2005 .
[78] Hufenbach, W., and Kroll, L., “Laminated cylindrical shells under mechanical and hygro-thermal loads, ” Advances in Engineering Software, Vol. 23, pp. 83-89, 1995 .
[79] Jane, K. C. and Lee, Z. Y., “Thermoelastic transient response of an infinitely long multilayered cylinder, ’’ Mechanics Research Communications, 1998.
[80] Jane, K.C., and Lee, Z. Y., “Thermoelasticity of multilayered cylinders, ” Journal of Thermal Stresses, Vol. 22, pp. 57-74, 1999.
[81] Krzyzanowski, M., and Beynon, J. H., “Modelling the boundary conditions for thermo-mechanical processing—oxide scale behavior and composition effects, ” Modeling Simulation Material Science, Eng.8, pp.927–945, 2000.
[82] Cürdaneli, S., AK, M. A., and Ulas, A.,” Experimental analysis on the measurement of ballistic properties of solid propellants, ” Recent Advances in Space Technologies, pp.231-235, 2007.
[83] Yıldırım, H. C., and Özüpek, S¸ “Structural assessment of a solid propellant rocket motor: Effects of aging and damage, ” Aerospace Science and Technology, Vol. 15, pp. 635-641, 2011.
[84] Renganathan, K., Rao, G. B., and Jana, M. K, ”Effect of bulk modulus variation with pressure in propellant grain elastic stress analysis, ” Computers & Structures, Vol. 26, Issue 5, pp. 761–766, 1987.
[85] Chyuan, S. W., “Dynamic analysis of solid propellant grains subjected to ignition pressurization loading, ” Journal of Sound and Vibration, Vol. 268, No.3, pp.465-483, 2003.
[86] Chyuan, S. W., “Nonlinear thermoviscoelastic analysis of solid propellant grains subjected to temperature loading, ” Finite Elements in Analysis and Design, Vol. 38, No. 7, pp. 613–630, 2002
[87] Yuan, D., Tang, G., Lei, Y., and Meng, S.,” Analysis of the surface cracks of long range storage solid motor grain, ” Key Engineering Materials Vols. 324-325, pp. 93-96, 2006.
[88] 張建偉,孫冰,“固體火箭發動機藥柱大變形有限元分析” ,中國宇航學會固體火箭推進專業委員會第二一屆年會,固體火箭推進技術學術會議論文集,85-90頁,2004年。
[89] Zhang, S. J., Ren, J. G., and Tian, S. P., “Analysis on structure reliability of solid rocket motor viscoelastic grains, ” Journal of Solid Rocket Technology, Vol.29, No.3, pp.183-189, 2006.
[90] Zhou, H. M., Gao, J., Qi, Q., and Zhou, Y., “Stress analysis of SRM grain under random temperature loading, ” Journal of Naval Aeronautical and Astronautical University, Vol.25, No.1, pp. 54-68, 2010.
[91] 董可海,邢耀國,”某型固體火箭發動機啓動過程中藥柱的應力分析”,中國宇航學會1998年聯合推進會議論文集, 36-42頁, 1998年。
[92] Yuan, W. L., and Pan, L., "Analysis on the temperature and stress of the solid rocket motor in sea environmental temperature, ” Ship science and technology, Vol.31, No.3, pp.85-88, 2009.
[93] Sun, J. I., “Stress Analysis of Solid Rocket Motor’s Grain Based on ANSYS, ” Mechanical engineering & automation, Vol.6, pp.26-28, 2009.
[94] He, C. X., Wei, F., and Zhi, Y., “ Structural integrity analysis for solid propellant rocket engine under overload, ” Journal of Shijiazhuang railway institute, Vol.20, No.1, pp.24-28, 2007.
[95] Yu, Y., Wang, N. F., and Zhang, P., “Analysis on three-dimensional structural integrity of a free loading mixed grain under low temperature environment, ” Journal of Solid Rocket Technology, Vol.30, No.1, pp.34-38, 2007.
[96] Xu, X., and Yu, S.C., “Transient temperature and stress analysis of propellant grains during cooling process after curing, ” Journal of Solid Rocket Technology, Vol.27, No.3, pp.180-183, 2004.
[97] Yu, Y., Wang, N. F., and Zhang, P., “Structural integrity analysis for the canular solid propellant grains subjected to temperature loading, ” Journal of Solid Rocket Technology, Vol.27, No.6, pp.492-496, 2006.
[98] Li, G. C., Dong, K. H., Zhang, Y., Wang, Y. F., and Liu, Z. Q., “Cumulative Damage Rule of Solid Rocket Motor Grains under the Influence of Environmental Temperature, ” Chinese Journal of Explosives&Propellants, Vol.33, No.4, pp.19-22, 2010.
[99] Chen, R. X., “Effect of case stiffness on the grain strength when applied internal pressure, ” Journal of Solid Rocket Technology, Vol.34, No.1, pp.101-104, 2011.
[100] Zhi, Y. H., Wei, F., Gou, W. X., and Zhong, T. S., ”Three-dimensional stress analysis in solid rocket motor chamber under overload, ” Journal of Solid Rocket Technology, Vol.29, No.3, pp.174-178, 2006.
[101] Yang, Y. C., Fu, X. J., and Zhang, Y. X., “The structural analysis of some SRM grain, ” Aerospace Shanghai, No.4, pp.44-47, 2004.
[102] 徐紅玉,王燕霜,陳殿雲,王斌,張元冲,”固體火箭發動機複合材料殼體破壞分析及優化”, 河南科技大學學報(自然科學版),第26卷第4期,8-11頁,2005年8月。
[103] 潘奠華,胡明勇, ”固化降溫過程中固體火箭發動機材料參數的影響分析”, 煙台大學學報(自然科學與工程版),第19卷第1期,63-67頁,2006年1月。
[104] Pan, D. H., Hu, M. Y., and Li, B. S., ”Thermal-mechanical coupling analysis and application in solid propellants grains,” Journal of Yantai University (Natural Science and Engineering Edition), Vol.18, No.3, pp.216-221, 2005.
[105] 朱衛兵,”固體火箭發動機藥柱結構完整性及可靠性分析”, 哈爾濱工程大學,博士學位論文,2005年。
[106] Bradley, W., Deacetic, J., and Stenersen, A.,” Investigation and evaluation of motor insulation for multiple restart application, ” Air Force Rocket Propulsion Laboratory, TR-67-287, 1967
[107] Jia, X. L., Li, G., Sui, G., Li, P., Yu, Y. H., Liu, H. Y., and Yang, X.P., “Effect of pretreated polysulfonamide pulp on the ablation behaviour of EPDM composites, ” Materials Chemistry and Physics, Vol. 112, pp. 823–830, 2008.
[108] Cohen, L. S., Couch, H. T., and Murrin, T. A., “Performance of ablator materials in ramjet environments, ” New York, 1974, AIAA Paper 74-697.
[109] Roberts, W. E., and Chambers, J. W., “Investigation of silicon elastomers as ramburner insulators, ” ASME Intersociety Conference on Environmental Systems, San Diego, CA, 12–15 July, 1976.
[110] Kim, E. S., Kim, E. J., Shim, J. H., and Yoon, J., “Thermal stability and ablation properties of silicone rubber composites, ” Journal of Applied Polymer Science, Vol.110, Issue 2, pp.1263-1270, 2008.
[111] Webster, F. F., “Liquid fueled integral rocket ramjet technology review,” AIAA Paper, 1978, 78-1108.
[112] Chen, B., Zhang, L., Cheng, L., and Luan, X., “Ablation behavior of a three-dimensional carbon/silicon carbide composite nozzle in an ethanol/oxygen combustion gas generator, ” International Journal of Applied Ceramic Technology, Vol. 6, No.2, pp. 182–189, 2009.
[113] Maisonneuve, Y., “Ablation of solid-fuel booster nozzle materials, ” Aerospace Science and Technology, Vol. 1, pp. 277-289, June 1997.
[114] Alagar, M., Kumar, A. A., Mahesh, K. P. O., and Dinakaran, K., “ Studies on thermal and morphological characteristics of e-glass/kevlar 49 reinforced siliconized epoxy composites, ” European Polymer Journal, Vol. 36, pp. 2449–2454, 2000.
[115] Gao, G., Zhang, Z., Li, X., Meng, Q., and Zheng, Y., “An excellent ablative composite based on PBO reinforced EPDM, ” Polymer Bulletin, Vol. 64, pp.607–622, 2010.
[116] Herring, L. G., “Elastomeric insulating materials for rocket motors, ” U.S. Patent, 4,501,841, 1985
[117] Bahramian, A. R., Kokabi, M., Famili, M. H. N., and Beheshty, M. H., “Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: process modeling and experimental, ” Polymer, Vol. 47, pp. 3661–3673, 2006.
[118] Perkins, F. M., and Cook, D. B., “Assessment of EPDM elastomer change using the thermal flash method-calibration studies, ” Washington, D.C., AIAA Paper 93–1854, 1993.
[119] Moyer, C. B., and Rindal, R. A., “Finite difference solution for the in-depth response of charring materials considering surface chemical and energy balances, ” NASA, CR-1061, June 1968.
[120] Derbidge, C., and Powers, C., “Acceleration effects on internal insulation erosion, ” Washington, D.C., 1993, AIAA Paper 93–1858.
[121] Ferry, J.D., "Viscoelastic properties of polymers, " 3rd. ed., Wiley, New York , 1980.
[122] Krack, M., Secanell, M., and Mertiny, P., ”Cost optimization of hybrid composite flywheel rotors for energy storage, ” Struct Multidisc Optim, 14, pp.779–795, 2010.
[123] Dar, N. U., Qureshi, E. M., and Hammouda, M. M. I.,” Analysis of weld-induced residual stresses and distortions in thin-walled cylinders, ” Journal of Mechanical Science and Technology, 23, pp.1118-1131, 2009 .
[124] Ellis, H. D., ”The finite element method for mechanics of solid with ansys applications, ” CRC Press, Taylor & Francis Group, pp.205-210, 2011.
[125] “Minimum standard structural analysis procedures for solid rocket grains under thermal and pressurization loading, ” JANNAF Solid Propellant Structural Integrity Handbook, Chemical Propulsion Information Agency, Doc. 230, Columbia, MD, 1987.
[126] Wittmann, F. H., "On the creep and stress relaxation of concrete, " Rakenteiden Mekaniikka, Vol.4, No.2, pp.63-79,1971.
[127] Zi, G., and Bažant, Z. P., "Continuous Relaxation Spectrum for Concrete Creep and its Incorporation into Microplane Model M4, " Journal of Engineering Mechanics, pp.1331-1336, December 2002.
[128] Reviron, N., Nahas, G., Tailhan, J. L., and Le, M. F., "Experimental study of uniaxial tensile creep of concrete, " Concreep & Conference Proceedings, 2009, pp.453-457.
[129] Elder, A. S., "Analytical relations between constraints for generalized voigt and maxwell viscoelastic models, " RDT & E Project No.1A222901A211, 1963.
[130] George, F. D., "Time-temperature superposition for block copolymers, " Dissertation (Ph.D.), California Institute of Technology, 24 May 1971.
[131] Leaderman, H., ”Elastic and creep properties of filamentous materials and other high polymers, ” Textile foundation, Washington D.C. 1943.
[132] Williams, M. L., Landel, R. F., and Ferry, J. D., “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, ” Temperature dependence of relaxation mechanisms, Vol.77, pp.3701-3707, July 20, 1955.
[133] “Solid propellant grain master relaxation modulus analysis, ” Chung Shan Inst. of Science and Technology, SA 10958-02, Taiwan, ROC, 2001.
[134] Miner, M. A., “Cumulative damage in fatigue, ” J. Appl. Mech., Vol.12, Trans, ASME, Vol.67, A159-64, 1945
[135] Choi, Y. G., Shin, K. B., and Kim, W. H., “A study on size optimization of rocket motor case using the modified 2d axisymmetric finite element model, ” International Journal of Precision Engineering and Manufacturing, Vol. 11, No.6, pp.901-907, 2010.
[136] Biggs, G. L., ”Solid propellant aging kinetics,” 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2-5 August 2009, AIAA 2009-5423.
[137] Renganathan, K., Nageswara, R. B., and Jana, M. K, “Failure assessment on a strip biaxial tension specimen for a HTPB-based propellant material, ” Propellants, Explosives, Pyrotechnics, 24, pp.349-352, 1999.
[138] Davenas, A., “Solid rocket propulsion technology, ” Technology and Research Director, SNPE, France, 1st. English edition, pp.500-501, 1993.
[139] Wong, F. C., and Ait, K. A., “Mechanical behavior of particulate composites: experiments and micromechanical predictions, ” J.Appl Polym Sci., No.55, pp.263-278, 1995.
[140] Davenas, A., “Solid rocket propulsion technology, ” Technology and Research Director, SNPE, France, 1st. English edition, pp.65-66, 1993.
[141] ASTM-E-285-80. Annu Book ASTM Stand. 1980, Oxyacetylene Ablation Testing of Thermal Insulation Material, pp. 212–216, 1980.
[142] Daume, E., “Inhibitor coating for solid rocket propellant charge, ” U.S. Patent, 4,034,676, 1977.
[143] Reynolds, R. J. W., “Reviews in polymer technology, ” Composites, Vol. 3, No. 6, pp. 278–279, 1972.
[144] Yezzi, C. A., and Moore, B. B., “Characterization of Kevlar/EPDM rubbers for use as rocket motor case insulators, ” 1986, AIAA Paper 86–1489.
[145] Lehamann, W. A., and Lyon, J. F., “Aerothermal ablative characterization of selected external insulator candidates, ” Washington, D.C., 1993, AIAA Paper 93–1857.
[146] Skolnik, E. G, Moore, B. B., Davidson, T. F., and Spear, G. B., “The development of non-asbestos insulation for the tomahawk booster motor, ” JANNAF Propulsion Meeting, California, pp.99–108, 1987.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-09-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw