進階搜尋


下載電子全文  
系統識別號 U0026-2508201121525400
論文名稱(中文) 無橋式升壓型高功因整流器研製及H_infinity PID控制器設計
論文名稱(英文) Implementation of Bridgeless Boost High Power Factor Correction Rectifiers and H_infinity PID Controller Design
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 99
學期 2
出版年 100
研究生(中文) 周聖儒
研究生(英文) Sheng-Ru Chou
學號 n96984066
學位類別 碩士
語文別 中文
論文頁數 349頁
口試委員 指導教授-何明字
口試委員-林鐘烲
口試委員-陳信助
口試委員-蕭霖癸
口試委員-楊松霈
中文關鍵字 無橋式升壓型轉換器  數位訊號處理器  H_infinity模型匹配  PID控制器 
英文關鍵字 bridgeless boost converter  digital signal processor  H_infinity model-matching  PID controller 
學科別分類
中文摘要 本論文研究以無橋式升壓型轉換器作為主動式功因校正電路,在切換週Ts下,利用狀態空間平均法推導電流迴路的轉移函數,以此設計控制器使輸入電流ig追隨命令電壓vi,km,達到高功因性能;而在半線電壓週期T2L下,利用平均功率法推導輸出電壓迴路的轉移函數,並以此設計控制器使得輸出電壓維持在一定值,達到穩壓性能。
傳統的升壓型轉換器做為功因校正電路時,在整流器上有較高的導通損失,導致效率低落,如能減少整流器上的損失,必能提升整體電路的效率。本論文所使用的轉換器其結構簡單,省略了橋式整流,在大功率應用場合下,具有高效率的優勢。
在功因校正與穩壓控制器設計上,利用H_infinity模型匹配(model-matching)方式,設計PID控制器,並建構出控制器的參數空間,在參數空間內做最佳化(optimization)及強健性(robustness)設計。
實作上分別以類比控制IC L4981及數位控制DSP TMS320F2812為核心,研製高功因無橋式升壓型AC-DC整流器。在類比控制實作中,整流器規格為輸入電壓90 ~ 265 Vrms、輸出電壓400 V、最大輸出功率600 W;在數位控制實作中,整流器規格為輸入電壓90 ~ 130 Vrms、輸出電壓400 V、最大輸出功率600 W。最後,藉由量測結果驗證了轉換器具有高功因特性,且符合國際電流諧波規範,輸出電壓在輸入電壓振幅變動與負載變動之下,都能具有良好的穩壓性能。類比控制整流器之最高效率可達到98.3%;數位控制整流器最高效率可達到94%,顯示轉換效率優於傳統升壓型轉換器。
英文摘要 This thesis studies the problems of use of the bridgeless boost converter as an active power factor correction (PFC) circuit. The state-space averaging method is used to derive the current loop transfer function over one switching period Ts. The controller is designed so that the input current ig follows the command voltage vi,km to achieve a high power factor performance. The average power law is used to derived the output voltage loop transfer function on the half cycle line voltage T2L. The controller is then designed so that the rectifier output voltage is regulated at the reference level.
In conventional boost converters with the power factor correction circuits, the rectifier has higher conduction losses, which lead to inefficiencies. If the losses can be reduced, the overall efficiency of the circuit can be improved. In this thesis, the converter that is used has a simple structure. By omitting the bridge rectifier, this converter in high power application can obtain the high efficiency.
Here, PID controllers are designed for the voltage regulator and power factor correction controller. The PID controller is designed based on an H_infinity model-matching problem. The optimization and robustness of the performance are obtained by constructing the controller parameters in the parametric space.
Both of analog and digital control are tested on the L4981 integrated circuit and digital signal processor TMS320F2812, respectively. The control schemes are implemented for the bridgeless boost PFC rectifiers. The analog control has input voltage 90 ~ 265 Vrms, output voltage 400 V and rated power 600 W. While the digital control has input voltage 90 ~ 130 Vrms, output voltage 400 V and rated power 600 W. Finally, the experimental results are provided to verify the high power factor and the designed systems also comply with the international current standard. The result has good performance on the output voltage regulation with respect to variation of the input voltage and loads. The maximum efficiency of the designed analog and digital control rectifiers can reach 98.3% and 94%, respectively. This demonstrates that the efficiency of the designed converter is better than that of the traditional boost converters.
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 VIII
圖表目錄 XIII
第一章 緒論
1-1 研究背景與動機 1-1
1-2 研究目的與成果 1-6
1-3 研究步驟 1-10
1-4 相關文獻探討 1-13
1-5 論文架構 1-16
第二章 功率因數校正
2-1 前言 2-1
2-2 功率因數校正技術簡介 2-1
2-3 功率因數改善的效益 2-3
2-4 功率因數校正電路之發展 2-9
2-4-1 被動式功率因數校正電路 2-9
2-4-2 主動式功率因數校正電路 2-16
2-4-3 主動式功率因數校正電路的控制方法 2-22
2-5 雙級式與單級式功率因數校正轉換器 2-33
第三章 高功因無橋式升壓型轉換器分析
3-1 前言 3-1
3-2 無橋升壓型PFC電路拓樸概述 3-1
3-3 傳統升壓型PFC電路拓樸與無橋升壓型PFC電路拓樸之比較 3-5
3-4 無橋升壓型PFC電路控制難點 3-7
3-4-1 無橋升壓型PFC電路控制方案回顧 3-8
3-4-2 無橋升壓型PFC輸入電壓感測方法 3-11
3-4-3 無橋升壓型PFC電流感測方法 3-14
3-5 無橋升壓型PFC電路分析 3-17
3-6 無橋式升壓型整流器功因校正結構 3-24
3-6-1 內迴路功因校正分析 3-25
3-6-2 外迴路輸出穩壓分析 3-26
3-6-3 輸入電壓前饋控制 3-29
3-7 無橋式升壓型轉換器之小信號模式 3-33
3-8 電壓控制之小信號模式 3-42
第四章 類比控制之高功因無橋式升壓型整流器
4-1 前言 4-1
4-2 高功率功因校正控制IC L4981 4-1
4-3 無橋式升壓型轉換器設計 4-5
4-3-1 元件設計與選擇 4-5
4-3-2 電流感測 4-13
4-3-3 乘/除法器輸入信號設定 4-17
4-3-4 切換頻率設定 4-22
4-3-5 過電壓保護 4-23
4-4 類比控制器設計 4-23
4-4-1 內迴路電流控制器 4-24
4-4-2 外迴路電壓控制器 4-32
4-5 功因校正控制IC UC3854實現傳統升壓型轉換器 4-37
4-5-1 升壓型轉換器設計 4-41
4-5-2 元件設計與選擇 4-41
4-5-3 電流感測 4-44
4-5-4 乘/除法器輸入信號設定 4-46
4-5-5 切換頻率設定 4-48
4-6 類比控制器設計 4-48
4-6-1 內迴路電流控制器 4-49
4-6-2 外迴路電壓控制器 4-55
第五章 類比控制之高功因無橋式升壓型整流器模擬
5-1 前言 5-1
5-2 高功因無橋式升壓型整流器電路模擬驗證 5-1
5-3 高功因升壓型整流器電路模擬驗證 5-9
第六章 強健控制器設計
6-1 前言 6-1
6-2 PID控制器 6-1
6-3 H_infinity PID控制器設計步驟 6-5
6-3-1 H_infinity範數(norm)的定義 6-5
6-3-2 H_infinity模型匹配系統方塊圖 6-6
6-3-3 標準二階系統 6-8
6-3-4 穩定化和H_infinity模型匹配 6-9
6-4 高功因無橋式升壓型整流器控制器設計 6-17
6-4-1 內迴路電流控制器 6-17
6-4-2 外迴路電壓控制器 6-25
6-5 反積分終結之PID控制系統 6-33
第七章 數位控制之核心(TMS320F2812)
7-1 前言 7-1
7-2 控制晶片TMS320F2812特性簡介 7-1
7-3 控制晶片TMS320F2812各功能介紹 7-3
7-3-1 類比/數位(ADC)轉換模組 7-3
7-3-2 解碼電路設計 7-8
7-3-3 PWM介面 7-11
7-3-4 事件處理模組的中斷 7-16
7-4 軟體環境介紹 7-18
7-4-1 Code Composer Studio簡介 7-18
第八章 數位控制之高功因無橋式升壓型轉換器
8-1 前言 8-1
8-2 介面電路設計 8-2
8-2-1 降壓與濾波電路 8-2
8-2-2 電流感測電路 8-5
8-2-3 光耦合電路與驅動電路 8-9
8-3 數位控制器之設計 8-10
8-4 高功因無橋式升壓型整流器之模擬 8-13
8-5 程式流程圖說明 8-17
第九章 實作成果
9-1 前言 9-1
9-2 類比控制之實作成果 9-1
9-2-1 高功因無橋式升壓型整流器之實作成果 9-1
9-2-2 高功因升壓型整流器之實作成果 9-17
9-2-3 無橋升壓型與傳統升壓型功率因數校正實驗數據比較 9-32
9-3 數位控制之實作成果 9-35
9-4 實作心得 9-45
第十章 結論與未來展望
10-1 結論 10-1
10-2 未來展望 10-3
參考文獻
自述
參考文獻 [1] Electromagnetic Compatibility (EMC). Limits for Harmonic Current Emissions, IEC 61000-3-2, Switzerland, 2001.
[2] J. Sebastian, M. Jaureguizar, and J. Uceda, “An Overview of Power Factor Correction in Single Phase Off-Line Power Supply System,” IEEE IECON, pp. 1688-1693, 1994.
[3] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single Phase Power Factor Correction: A Survey,” IEEE Transactions Power Electronics, Vol. 18, No. 3, pp. 749-755, 2003.
[4] D. S. L. Simonetti, J. Sebastian, and J. Uceda, “The Discontinuous Conduction Mode Sepic and Ćuk Power Factor Preregulators: Analysis and Design,” IEEE Transactions Industrial Electronics, Vol. 44, No. 5, pp. 630-637, 1997.
[5] H. Wei and I. Batarseh, “Comparison of Basic Converter Topologies for Power Factor Correction,” IEEE PESC, pp. 348-353, 1998.
[6] R. Redl, “Reducing Distortion in Boost Rectifiers with Automatic Control,” IEEE APEC, pp. 74-80, 1997.
[7] R. Erikson and M. Madigan, “Design of a Simple High-Power-Factor Rectifier Based on The Flyback Converter,” IEEE APEC, pp. 792-801, 1990.
[8] 林保偉,「基本電力轉換器功因校正能力性能分析與隔離式Zeta電力轉換器之模式推導及控制器設計」,國立成功大學工程科學系碩士論文,民國九十一年。
[9] 梁從主、陳建富、吳登和、陳奉般、曾國鏡,單級高功因充電器之研究,電子月刊,第七卷,第二期,第106-119頁,民國九十年。
[10] J. Bazinet and J. A. O’connor, “Analysis and Design of a Zero Voltage Transition Power Factor Correction Circuit,” IEEE APEC, pp. 591-597, 1994.
[11] J. Rajagopalan, F. C. Lee, and P. Nora, “A Generalized Technique for Derivation of Average Current Mode Control Laws for Power Factor Correction without Input Voltage Sensing,” IEEE Transactions Industry Applications, Vol. 26, No. 5, pp. 881-885, 1990.
[12] L. Dixon, “Average Current Mode Control of Switching Power Supplies,” Unitrode Power Supply Design Seminar, pp. 5.1-5.4, 1990.
[13] D. Maksimovic, “Design of the Clamped Current High-Power-Factor Boost Rectifier,” IEEE APEC, pp. 584-590, 1994.
[14] J. P. Gegner and C. Q. Lee, “Linear Peak Current Mode Control: A Simple Active Power Factor Correction Control Technique for Continuous Conduction Mode,” IEEE PESC, pp. 196-202, 1996.
[15] R. Redl and B. Erisman, “Reducing Distortion in Peak Current Controlled Boost Power Factor Correctors,” IEEE APEC, pp. 576-583, 1994.
[16] C. Zhou, R. B. Ridley, and F. C. Lee, “Design and Analysis of a Hysteretic Boost Power Factor Correction Circuit,” IEEE PESC, pp. 800-807, 1990.
[17] J. Spangler and A. Behera, “A Comparison Between Hysteretic and Fixed Frequency Boost Converter Used for Power Factor Correction,” IEEE APEC, pp. 281-286, 1993.
[18] J. Lai and D. Chen, “Design Considerations for Power Factor Correction Boost Converter Operating at the Boundary of Continuous Conduction Mode and Discontinuous Conduction Mode,” IEEE APEC, pp. 267-273, 1993.
[19] M. Dawande and G. Dubey, “Programmable Input Power Factor Correction Method for Switch Mode Rectifiers,” IEEE APEC, pp. 274-280, 1993.
[20] E. Dallago, M. Passoni, and G. Sassone, “Novel Current Transducer in a Single-Phase Active Power Factor Correction System,” IEEE Transactions Power Electronics, Vol. 15, No. 3, pp. 529-535, 2000.
[21] M. M. Javanovic and Y. Jang, “State-Of-The-Art, Single-Phase, Active Power Factor Correction Techniques for High Power Applications Overview,” IEEE Transactions Industry Applications, Vol. 52, No. 3, pp. 701-708, 2005.
[22] B. Lu, R. Brown, and M. Soldano, “Bridgeless PFC Implementation Using One-Cycle Control Technique,” Applied Power Electronics Conference and Exposition, 20th IEEE, Vol. 2, pp. 812-817, 2005.
[23] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” IEEE Transactions Power Electronics, Vol. 23, No. 3, pp. 1381-1390, 2008.
[24] W. Y. Choi, J. M. Kwon, E. H. Kim, J. J. Lee, and B. H. Kwon “Bridgeless Boost Rectifier with Low Conduction Losses and Reduced Diode Reverse-Recovery Problems,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 2, pp. 769-780, 2007.
[25] P. Kong, S. Wang, and F. C. Lee, “Common Mode EMI Noise Suppression for Bridgeless PFC Converters,” IEEE Transactions Power Electronics, Vol. 23, No. 1, pp. 291-297, 2008.
[26] Y. Jang and M. M. Jovanovic, “A Bridgeless PFC Boost Rectifier with Optimized Magnetic Utilization,” IEEE Transactions Power Electronics, Vol. 24, No. 1, pp. 85-93, 2009.
[27] T. Qi, L. Xing, and J. Sun, “Dual-Boost Single-phase PFC Input Current Control Based on Output Current Sensing,” IEEE Transactions Power Electronics, Vol. 24, No. 11, pp. 2523-2530, 2009.
[28] K. P. Louganski and J. S. Lai, “Current Phase Lead Compensation in Single Phase PFC Boost Converter with Reduce Switching Frequency to Line Frequency Ratio,” IEEE Transactions Power Electronics, Vol. 22, No. 1, pp. 113-119, 2007.
[29] M. Chen and J. Sun, “Feedforward Current Control of Boost Single-phase PFC Converters,” IEEE Transactions Power Electronics, Vol. 21, No. 2, pp. 338-345, 2006.
[30] D. M. Van de Sype, K. De Gusseme, A. P. M. Van den Bossche, and J. A. Melkebeek, “Duty-ratio Feedforward for Digitally Controlled Boost PFC Converters,” IEEE Transactions Power Electronics, Vol. 52, No. 1, pp. 108-115, 2005.
[31] S. Kim and P. N. Enjeti, “Control of Multiple Single-phase PFC Modules with a Single Low-cost DSP,” IEEE Transactions Industry Applications, Vol. 39, No. 5, pp. 1379-1385, 2003.
[32] J. Sun, “On the Zero-crossing Distortion in Single-phase PFC Converters,” IEEE Transactions Power Electronics, Vol. 19, No. 3, pp. 685-692, 2004.
[33] D. G. Lamar, A. Fernandez, M. Arias, M. Rodriguez, J. Sebastian, and M. M. Hernando, “A Unity Power Factor Correction Preregulator with Fast Dynamic Response Based on a Low-cost Microcontroller,” IEEE Transactions Power Electronics, Vol. 23, No. 2, pp. 635-642, 2008.
[34] P. G. Kong, Z. H. Jiang, Y. D. Liu, L. P. Huang, and Q. Lin, “A Novel High-frequency Digital PFC Controller with Second Harmonic Compensation,” IEEE TENCON, pp. 53-56, 2004.
[35] H. C. Chen, S. H. Li, and C. M. Liaw, “Switch-mode Rectifier with Digital Robust Ripple Compensation and Current Waveform Controls,” IEEE Transactions Power Electronics, Vol. 19, No. 2, pp. 560-566, 2004.
[36] A. Prodic, J. Q. Chen, R.W. Erickson, and D. Maksimovic, “Digitally Controlled Low-harmonic Rectifier Having Fast Dynamic Responses,” IEEE APEC Conference Rec., pp. 476-482, Mar. 2002.
[37] A. Prodic, D. Maksimovic, and R.W. Erickson, “Dead-zone Digital Controllers for Improved Dynamic Response of Low Harmonic Rectifiers,” IEEE Transactions Power Electronics, Vol. 21, No. 1, pp. 173-181, 2006.
[38] K. L. Chai, W. H. Peng, and Y. Y. Tzou, “Fast Response Control of a Boost PFC Converter,” IEEE PEDS Conference Rec., pp. 1095-1100, 2003.
[39] S. Choudhury, “Average Current Mode Controlled Power Factor Correction Converter using TMS320LF2407A,” Texas Instruments Application Report, 2005, http://focus.ti.com/lit/an/spra902a/spra902a.pdf.
[40] Y. T. Lin and Y. Y. Tzou, “Digital Control of Boost PFC AD/DC Converters with Low THD and Fast Dynamic Response,” IEEE IPEMC., pp. 1672-1677, 2009.
[41] B. A. Francis, A Course in H_infinity Control Theory, Vol. 88 in Lecture Notes in Control and Information Sciences, Springer-Verlag, NY, 1987.
[42] B. C. Chang and J. B. Pearson, “Optimal Disturbance Reduction in Linear Multivariable Systems,” IEEE Transactions on Automatic Control, Vol. 29, No. 10, pp. 880-887, 1984.
[43] J. C. Doyle, Lecture Notes in Advances in Multivariable Control, ONR/Honeywell Workshop, Minneapolis, MN, 1984.
[44] H. Kimura, “Conjugation, Interpolation and Model-Matching in H_infinity,” International Journal of Control, Vol. 49, No. 1, pp. 269-308, 1989.
[45] A. C. M. Ran, “State Space Formulae for a Model-Matching Problem,” Systems and Control Letters, Vol. 12, No. 1, pp. 17-22, 1989.
[46] J. A. Ball and A. C. M. Ran, “Optimal Hankel Norm Model Reductions and Wiener-Hopf Factorizations I: The Canonical Case,” SIAM Journal on Control and Optimization, Vol. 25, No. 2, pp. 362-382, 1987.
[47] J. A. Ball and N. Cohen, “Sensitivity Minimization in an H_infinity Norm: Parameterization of All Suboptimal Solutions,” International Journal of Control, Vol. 46, No. 3, pp. 785-816, 1987.
[48] K. Glover and J. C. Doyle, “State-Space Formulae for Stabilizing Controllers that Satisfy an H_infinity Norm Bound and Relations to Risk Sensitivity,” Systems and Control Letters, Vol. 11, No. 3, pp. 167-172, 1988.
[49] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State Space Solutions to Standard H_two and H_infinity Control Problems,” IEEE Transactions on Automatic Control, Vol. 34, No. 8, pp. 831-847, 1989.
[50] K. Zhou and P. P. Khargonekar, “An Algebraic Riccati Equation Approach to H_infinity Optimization,” Systems and Control Letters, Vol. 11, No. 2, pp. 85-91, 1988.
[51] H. Kimura, Y. Lu, and R. Kamatani, “On the Structure of H_infinity Control Systems and Related Extensions,” IEEE Transactions on Automatic Control, Vol. 36, No. 6, pp. 653-667, 1991.
[52] D. C. Huland and D. S. Bernstein, “The Optimal Projection Equations for Fixed-order Dynamic Compensation,” IEEE Transactions on Automatic Control, Vol. AC-29, 1034-1037, 1984.
[53] D. S. Bernstein and W. M. Haddad, “LQG Control with an H_infinity Performance Bound: A Riccati Equation Approach,” IEEE Transactions on Automatic Control, Vol. AC-34, 293-305, 1989.
[54] T. Iwasaki and R. E. Skelton, “All Fixed Order H_infinity Controllers: Observer-based Structure and Covariance Bounds,” IEEE Transactions on Automatic Control, Vol. AC-40, 512-516, 1995.
[55] M. Mattei, “Sufficient Conditions for the Synthesis of H_infinity Fixed-order Controllers,” International Journal of Robust and Nonlinear Control, Vol. 10, 1237-1248, 2000.
[56] A. Datta, M. T. Ho, and S. P. Bhattacharyya, Structure and Synthesis of PID Controllers, Springer-Verlag, London, UK, 2000.
[57] M. T. Soylemez, N. Munro, and H. Baki, “Fast Calculation of Stabilizing PID Controllers,” Automatica, Vol. 39, 12-126, 2003.
[58] J. Ackermann and D. Kaesbauer, “Stable Polyhedra in Parameter Space,” Automatica, Vol. 39, No. 5, pp. 937-943, 2003.
[59] G. S. Silva, A. Datta, and S. P. Bhattachayya, “New Results on Synthsis of PID Controllers,” IEEE Transactions on Automatic Control, Vol. 47, No.2, 241-252, 2002.
[60] H. Xu, A. Datta, and S. P. Bhattachayya, “Computation of All Stabilizing PID Gains for Digital Control System,” IEEE Transactions on Automatic Control, Vol. 46, No.4, 647-652, 2001.
[61] I. H. Keel, J. I. Rego, and S. P. Bhattachayya, “A New Approach to Digital PID Controllers,” IEEE Transactions on Automatic Control, Vol. 48, No.4, 687-692, 2003.
[62] R. N. Tantaris, L. H. Keel, and S. P. Bhattachayya, “Stabilizing of Discrete-time Systems by Fist-order Controllers,” IEEE Transactions on Automatic Control, Vol. 48, No.5, 858-861, 2003.
[63] M. T. Ho, “Synthesis of H_infinity PID controllers: A Parametric Approach,” Automatica, Vol. 39, No. 6, pp. 1069-1075, 2003.
[64] M. T. Ho and C. Y. Lin, “PID Controller Design for Robust Performance,” IEEE Transactions on Automatic Control, Vol. 48, No. 8, pp. 1404-1409, 2003.
[65] F. Blanchini, A. Lepschy, S. Miani, and U. Viaro, “Characterization of PID and Lead/Lag Compensators Satisfying Given H_infinity Specifications,” IEEE Transactions on Automatic Control, Vol. 49, No. 5, pp. 736-740, 2004.
[66] K. Saadaoui and A. B. Ozquler, “A New Method for the Computation of all Stabilizing Controllers of a Gain Order,” International Journal of Control, Vol. 79, No. 1, 14-28, 2005.
[67] R. N. Tantaris, L. H. Keel, and S. P. Bhattachayya, “H_infinity Desdign with First-order Controllers,” IEEE Transactions on Automatic Control, Vol. 51, No.8, 1343-1347, 2006.
[68] M. T. Ho and J. M. Lu, “H_infinity PID Controller Design for Lur’e System and Its Application to a Ball and Wheel System ,” International Journal of Control, Vol. 78, No. 1, 53-64, 2005.
[69] S. P. Bhattacharyya, H. Chapellat, and L. H. Keel, Robust Control: The Parametric Approach, Prentice-Hall, Upper Saddle River, NJ, 1995.
[70] B. R. Barmish, New Tools for Robustness of Linear systems, New York, Macmillan, 1994.
[71] S. Bhattacharyya, L. H. Keel, and S. P. Bhattacharyya, “Robust stabilizer Synthesis for Interval Plants Using H_infinity Methods,” Proceedings of the 32nd IEEE Conf. on Decision and Contr., 3003-3008, 1993.
[72] K. B. Datta and V. V. Patel, “H_infinity-based Synthesis for a Robust Controller of Interval Plants,” Automatica, Vol. 32, No. 11, 1575-1579, 1996.
[73] A. Rantzer and A. Mebretski, “A Convex Parameterization of Robustly Stabilizing Controllers,” IEEE Transactions on Automatic Control, Vol. AC-39, 1802-1808, 1994.
[74] C. Abdallah, P. Dorato, F. Perez, and D. Docampo, “Controller Synthesis for a Class of Interval Plants,” Automatic, Vol. 31, No. 2, 341-343, 1995.
[75] M. T. Ho, A. Datta, and S. P. Bhattachayya, “Robust and Non-fragile PID Controller Design,” International Journal of Robust and Nonlinear Control, Vol. 11, 681-708, 2001.
[76] M. T. Ho and S. T. Huang, “On the synthesis of Robust PID Controllers for Plants with Structured and Unstructured Uncertainty,” International Journal of Robust and Nonlinear Control, Vol. 15, No. 6, 247-285, 2005.
[77] 胡明星與謝運祥,「一種軟開關無橋Boost-PFC電路的分析和設計」,電力電子期刊,華南理工大學,民國九十六年。
[78] U. Moriconi, “A Bridgeless PFC Configuration Based on L4981 PFC Controller,” Application Note AN1606, STMicroelectronics, Geneva, Switezrland, 1/18-18/18, Nov. 2002, http://www.st.com/stonline/books/pdf/docs/9119.pdf.
[79] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, Second Edition, 2001.
[80] 洪志泰,「以數位信號處理器為控制單元之升壓型高功因電力轉換器之研製」,國立成功大學工程科學系碩士論文,民國九十七年。
[81] 鄭永昇,「類比及數位控制之升壓型功率因數校正整流器研製」,崑山科技大學電機工程系碩士論文,民國九十九年。
[82] R. D. Middlebrook and S. Cuk, “A General Unified Approacbh to Modelling Switching-Converter Power Stages,” IEEE PESC, pp. 18-34, 1976.
[83] J. L. Lin, C. Y. Chen and Y. K. Wang, “AC/DC Converter Analysis Based on LFR Model,” Proceedings of Taiwan Power Electronics Conference, pp. 1015-1020, 2006.
[84] 陳建仰,「嶄新單級高功因對角半橋型返馳式電力轉換器之LFR動態模式分析與設計」,國立成功大學工程科學系碩士論文,民國九十五年。
[85] 陳建榮,「以返馳式轉換器為基礎之高功因整流器研製」,崑山科技大學電機工程系碩士論文,民國九十三年。
[86] F. A. Huliehel, F. C. Lee, and B. H. Cho, “Small-Signal Modeling of the Single-Phase Boost High Power Factor Converter with Constant Frequency Control,” IEEE VPEC, pp. 475-482, 1992.
[87] P. C. Todd ,“UC3854 Controlled Power Factor Correction Circuit Design,” Texas Instruments, 1999, http://focus.ti.com/lit/an/slua144/slua144.pdf.
[88] 林品宏,「PID迴路整型及其在撓性臂定位控制之應用」,國立成功大學工程科學系碩士論文,民國九十二年。
[89] 李宜達,控制系統設計與模擬使用MATLAB/SIMULINK,全華科技圖書股份有限公司,台北,2009。
[90] M. E. Dyer, “The Complexity of Vertex Enumeration Methods,” Mathematics of Operations Research., Vol. 8, 381-402, 1983.
[91] D. Avis and K. Fukuda, “A Pivoting Algorithms and Convex Hulls and Vertex Enumeration Arrangements and Polyhedra,” Discrete and Computational Geometry., Vol. 8, 295-313, 1992.
[92] Vaccaro, R. J., Digital Control(A State-Space Approach), McGraw-Hill Publishers, first edition, 2002.
[93] 黃耀億,「無橋式功率因數修正器之研製」,國立台灣科技大學電子工程系碩士論文,民國九十六年。
[94] 方浩緯,「無橋式功率因數修正器的研製」,國立台北科技大學電機工程系碩士論文,民國九十七年。
[95] 莫清賢,“功因修正電路”,電子月刊,第三卷,第十一期,第76-86頁,1997。
[96] 梁適安,交換式電源供給器之理論與實務設計,全華科技圖書股份有限公司,台北,民國九十八年。
[97] 林容益,DSP數位化機電控制-TMS320F281X系統,全華科技圖書股份有限公司,台北,民國九十七年。
[98] 施錕鴻,「升壓型高功率因數電力轉換器之模式分析及控制器設計」,國立成功大學工程科學系碩士論文,民國八十八年。
[99] 黃碩國,「嶄新單級並聯返馳式高功因電力轉換器之模式分析及控制器設計」,國立成功大學工程科學系碩士論文,民國九十二年。
[100] 方嘉隆,「高效能主動功因修正電路研製」,國立中山大學電機工程學系碩士論文,民國九十五年。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-09-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw