進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508201121371100
論文名稱(中文) 臺灣西南海域岩心OR1-858-11地球化學特徵之研究
論文名稱(英文) The Geochemical Characteristics of the Core OR1-858-11 in the Southwest Coastal Ocean of Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 99
學期 2
出版年 100
研究生(中文) 邱靖堯
研究生(英文) Chin-Yao Chiu
學號 l46981074
學位類別 碩士
語文別 中文
論文頁數 62頁
口試委員 指導教授-吳銘志
共同指導教授-李紅春
口試委員-汪中和
口試委員-羅尚德
口試委員-張詠斌
中文關鍵字 西南外海  沉積物岩心  穩定同位素  碳通量  氣候和環境變化 
英文關鍵字 Southwest coast of Taiwan  Sediment core  stable isotope  carbon flux  climate and environmental change 
學科別分類
中文摘要 本研究對FATES計畫中從臺灣西南海域採取的一根具有很好的210Pb和137Cs定年之岩心,OR1-858-11(全長53 cm),進行總有機碳(TOC)、氮(TON) 、和它們的δ13C、δ15N,以及無機沉積的碳酸鹽以及有孔蟲殼體(G. sacculifer)的δ18O分析。另外,對沉積物稀酸可溶相(0.5N HCl)中重金屬元素(Cu, Zn, Pb, Co, Ni, Cr)進行量測。這些地球化學的分析目的在計算高屏外海碳通量,並利用碳氮氧同位素、C/N變化趨勢重建這個區域過去百年來氣候與環境變化。
岩心經定年後其沉積時間從1884年到2007年,平均沉積速率約為0.279 g/cm2/yr。δ13C (PDB)平均值:-21.6‰,TOC平均值:0.83±0.06 wt%,TIC平均值:0.97±0.09 wt%,δ15N平均值:3.6 ‰,C/N值介於7-9之間,平均為7.76。沉積物中由有機碳和無機碳提供的通量為5.03 mg C/cm2/yr。
岩心的TOC、C/N、δ13C、δ15N結果顯示,有機物主要是海洋藻類,C/N主要反映TOC的變化。C/N在1940年後明顯升高,可能顯示陸源輸入增加,反映人類活動造成地表植被的破壞。1995年以前,有機碳、氮同位素在長時間趨勢上呈正相關,也說明有機物以海相生成為主,可能反映海洋初級生產力,在濕潤氣候條件下,河流營養鹽輸入增加,海洋初級生產力提高,δ13C和δ15N變重。而在1995年以後,有機碳、氮同位素呈負相關,推測可能受陸源有機質的影響。此外,在無機碳δ18O值除去有孔蟲的影響後,與高雄地區近七十年雨量有著良好對比,顯示Δδ18Ow與雨量間存在正相關性。
岩心在2000-2007年之間的沉積有濁流層出現,推測與颱風(如:海棠颱風)帶來龐大雨量造成陸源沉積物大量輸入到該岩心站位,造成從210Pb沉積序列擾動、δ13C變輕、C/N變低以及δ15N變重,也可能是改變陸源物質有機質的原因。這種事件在岩心過去百年的沉積中不多見,也許指示人類活動造成的植被退化、地表侵蝕加劇,值得警惕。
岩心沉積物稀酸可溶相中重金屬元素含量,銅:6.27 ~ 13.68ppm,鉛:11.72 ~ 23.07 ppm,鈷:4.57 ~ 9.95ppm,鎳:6.67 ~ 12.62ppm,鉻:3.83 ~ 7.48ppm,鋅:26.37 ~ 44.09ppm。整體變化趨勢在1960年以前變化不大,但在1960年後則有逐漸升高的趨勢,可能與高雄地區重工業發展有所關連。在1980年以後則有逐漸下降的趨勢,推測與環境改善有關。
英文摘要 A 53-cm long box core, OR1-858-11, was collected from the southwest sea floor of Taiwan through the FATES project in 2008. The core had been well dated by 210Pb and 137Cs methods provided by Dr. Chih-An Huh at the Institute of Earth Sciences of the Academia Sinica. Using this well-dated core, we have analyzed total organic carbon (TOC), total organic nitrogen (TON) and their δ13C and δ15N, and δ18O of planktonic foraminifera (G. sacculifer) and CaCO3 grain inorganically precipitated from surface seawater. In addition, we also measured heavy metal concentrations such as Cu, Zn, Pb, Co, Ni and Cr in 0.5N HCl leachable phase. These geochemical analyses allow us to calculate the carbon fluxes and identify their sources in the southwest coast, specifically in the Kaoping Submarine Canyon area, and to reconstruct changes climate environmental of studying area during the past 100 years.
This core covers deposition from AD 1884 to 2007, and has an average deposition rate of 0.279 g/cm2/yr. For a total of 53 subsamples from the core, the average TOC and δ13CTOC (PDB) are 0.83±0.06 wt% and -21.6‰, respectively. The δ15NTON averages 3.6 ‰, and the C/N ratio varies between 7 to 9 and averages 7.76. The total inorganic carbon (TIC) of the core has an average of 0.97±0.09 wt%. Using these data, we obtain a rough carbon flux (TOC+TIC) to the sediments in the studying area, being 5.03 mg C/cm2/yr.
The TOC, C/N, δ13CTOC and δ15NTON results of the core indicate that (1) variations of the C/N ratio are chiefly controlled by the changes in TOC. (2) Relatively heavy δ13C and δ15N and low C/N indicate that the organic matter is mainly from marine algae. (3) The C/N ratio became higher after 1940, maybe reflecting increase of terrestrial input caused by deforestation due to human activities. (4) Before 1995, δ13CTOC and δ15NTON showed a positive correlation and their values reflected mainly marine organic products. When nutrient input from river increases under wetter climate conditions, the marine primary productivity in the area increases, so that δ13C and δ15N become heavier. After 1995, δ13CTOC and δ15NTON exhibit a negative correlation, suggesting significant terrestrial organic input.
We have measured the δ18O and δ13C of both total inorganic carbon (TIC) and planktonic foraminifera (G. sacculifer) in the 53 subsamples from the core. The average δ18O values of TIC and G. sacculifer are -6.3±0.9‰ (PDB) and -2.2±0.2‰ (PDB), respectively. The lighter δ18O values of TIC indicate that these carbonate grains formed in the surface water where the river water mixing is significant, whereas the foraminifera shell formed in the shallow water of marine environment. Using δ18O of TIC and G. Sac and Kaohsiung air temperature, we have calculated the δ18O difference of water masses for detecting river input. A decrease in Δδ18Ow indicates an increase in river input resulted from rainfall increase. The variation of the calculatedΔδ18Ow correlates with Kaohsiung rainfall during the past 70 years.
The core top appeared a turbulent layer between 2000 and 2007, such as result from Typhoon Haitang. The enormous rainfall brought by typhoon might cause large terrestrial input to the core site. The terrestrial sediments contain lighter δ13C and lower C/N. However, such an event was rare in the core during the past when typhoon always existed. One explanation is that soil erosion became serious during the past decade because of vegetation degradation (or deforestation) under human activities.
We have measured the heavy metal elements in 0.5N HCl leachable phase of the sediments in the core. Copper range between 6.27 ~ 13.68ppm; Lead range between 11.72 ~ 23.07 ppm; Cobalt range between 4.57 ~ 9.95ppm; Nickel range between 6.67 ~ 12.62ppm; Chrome range between 3.83 ~ 7.48 ppm; Zinc: range between 26.37 ~ 44.09ppm. Before 1960, these elemental concentrations were relatively constant. After 1960, the concentrations gradually increased, perhaps related to the development of heavy industry in the Kaohsiung area. After 1980, the elemental concentrations decreased, suggesting the improvement of the environmental control.
論文目次 目錄
摘要 I
ABSTRACT IV
誌謝 VII
目錄 IX
圖目錄 XI
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 前人研究 7
1-3 研究區域 14
1-4 研究目的 17
第二章 樣品與研究方法 18
2-1 採樣地點 18
2-2 樣品處理 19
2-3 分析方法 21
2-3-1 元素分析儀(Elemental Analyzer,EA) 21
2-3-2 Kiel全自動碳酸鹽進樣器(Keil carbonate device)23
2-3-3 同位素比值質譜儀(Isotope Ratio mass spectrometer,IRMS) 24
2-3-4 感應耦合電漿原子發射光譜儀(Inductively Coupled Plasma – Optical Emission Spectrometer,ICP-OES) 27
第三章 實驗結果 30
3-1 總有機碳(TOC)、總無機碳(TIC)與總有機氮(TON)分析結果
30
3-2-1 沉積物總有機碳與總無機碳含量 30
3-2-2 沉積物有機碳氮比值 31
3-2 同位素分析結果 34
3-3-1 δ13C分析結果 34
3-3-2 δ15N分析結果 36
3-3-3 碳酸鹽氧同位素分析結果 38
3-3 元素分析結果 40
第四章 討論 43
4-1 岩心年平均沉積碳量 43
4-2 岩心濁流沉積 43
4-3 δ13C、δ15N與C/N之關係 45
4-4 碳酸鹽氧同位素之意涵 47
4-5 由重金屬元素趨勢探討高雄地區工業污染的影響 50
第五章 結論 52
參考文獻 54
附錄 62
附錄一 210Pbex與137Cs活度與岩心深度關係圖 62
參考文獻 Doney, S.C and林筱雯,2006. 海洋酸化的危機。科學人,93-99。
江愛蘋,2004,台灣西南海域沉積物中底棲性有孔蟲的分佈。國立中山大學海洋地質及化學研究所碩士論文,共93頁。
吳孟麟,2004,高屏海底峽谷與陸棚流場之研究。中山大學海洋地質及化學研究所碩士論文,共131頁。
吳哲宇,2010,台灣西南海域沉積物重金屬的歷史變化及物種的分佈。中山大學海洋地質及化學研究所碩士論文,共95頁。
林洺秀,1991,台灣西南海域重金屬之陸源輸入及其沉積通量。國立中山大學海洋地質及化學研究所碩士論文,共75頁。
林鎮國,2007. 二氧化碳的儲存。科學發展2007年5月鯙413期,28-33。
海洋研究船海洋岩心與海底沉積物採樣點資料庫,http://odb.oc.ntu.edu.tw/MGG/TaiCOS2005/index.php。
許志剛,陳代釗,曾榮樹,CO2地質埋存滲漏風險及補救對策。地質論評,2008, 54(3): 373-386。
許峻嵐,2000,高屏海域沉積物重金屬之分佈與汙染史。國立中山大學海洋地質及化學研究所碩士論文,共128頁。
郭子興,2009,貴州中西部一千年來的氣候和環境變化紀錄:石筍ZJD-21紀錄。國立成功大學地球科學研究所碩士論文,共80頁。
陳彥銘,2007,台灣西南海域沉積速率分佈:Pb-210定年結果。中山大學海洋地質及化學研究所碩士論文,共98頁。
經濟部水利署,http://www.wra.gov.tw/。
關秉宗, 造林不是減碳萬靈丹. 2008-07-10 中國時報。

Baskaran, M., Santschi, P.H.,( 2002). Particulate and dissolved 210Pb activities in the shelf and slope regions of the Gulf of Mexico waters. Cont. Shelf Res. 22, 1493– 1510.
Caldeira, K. and Wickett, M.E., (2003). Anthropogenic carbon and ocean pH. Nature, 425, p. 365.
Carter, G. S., and M. C. Gregg (2002), Intense, variable mixing near the head of Monterey Submarine Canyon, J. Phys. Oceanogr., 32, 3145– 3165.
Chen M.P. and Leu T.C., (1984). Paleomagnetic inclination variations in Taiwan strait after Holocene transgression. Acta Oceanogr. Taiwanica 15, 53–70.
Chen, M.P. and Covey, M., (1983). Radiocarbon dating of piston cored sediments from the Taiwan Strait: preliminary results. Acta Oceanogr. Taiwanica 10, 9–15.
Chester, R.,(1990). Marine Geochemistry. Chapman & Hall, London, 698 pp.
Chi, W. R. and H. M. Huang (1981). Nannobiostratigraphy and paleoenvironments of the Late Neogene sediments and their tectonics implications in Miaoli, Taiwan, Petrol. Geol. Taiwan 18, 111–130.
Climate, http://climatex.org/
Cline, T.D., Kaplan, I.R., (1975). Isotope fractionation of dissolved nitrate during denitrification in the Eastern Tropical North Pacific Ocean. Marine Chemistry 3, 271–299.
DEMASTER D. J., MCKEE B. A., NITTROUER C. A., BREWSTER D. C., and BI.SCAYEP . E. (1985) Rates of sediment reworking at the HEBBLE site based on measurements of Th-234. Cs-137 and Pb-210. Mar. Geol. 66, 135-148.
Deutsch, C. D., N. Gruber, R. M. Key, A. Ganachaud, and J. L.Sarmiento (2001), Denitrification and N2 fixation in the Pacific Ocean, Global Biogeochem. Cycles, 15(2), 483–506.
Durrieu de Madron X, Abassi A, Heussner S, Monaco A, Aloisi JC, Radakovitch O, et al.,(2000) Particulate matter and organic carbon budget for the Gulf of Lions (NW Mediterranean). Oceanol. Acta ;23:717– 730.
Fairbanks, R.G., Wiebe, P.H., Be´, A.W.H., (1980). Vertical distribution and isotopic composition of living planktonic foraminifera in the Western North Atlantic. Science 207, 61– 63.
Falkowski, P.G., Barber, R.T. & Smetacek, V., (1998). Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200–206.
Fontugne, M.R. and Duplessy, J.C., (1986). Variation of the monsoon regime during the Upper Quaternary: evidence from carbon isotopic record of organic matter in North Indian Ocean sediment core. Palaeogeogr., Palaeoclimatol., Palaeoecol., 56: 69-88.
Goering, J., Alexander, V., Haubenstock, N., (1990). Seasonal variability of stable carbon an nitrogen isotope ratios of organisms in a North Pacific Bay. Estuarine, Coastal and Shelf Science 30, 239–260.
Granata, T.C., Vidondo, B., Duarte, C.M., Satta, M.P., Garcia, M., (1999). Hydrodynamics and particle transport associated with a submarine canyon off Blanes (Spain, NW Mediterranean Sea). Cont. Shelf Res. 19, 1249– 1263.
Hayes, J.M.,(1993).Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Marine Geology 113:111–125
Heussner, S., Calafat, A.M., Palanques, A., (1996). Quantitative and qualitative features of particle fluxes in the North- Balearic Basin. In: Canals, M., Casamor, J.L., Cacho, I., Calafat, A.M., Monaco, A. Eds., EUROMARGE-NB Final Report, MAST II Programme, E.U., Vol. II. Barcelona, pp. 43–66.
Holmes, M. E., R. R. Schneider, P. J. Muller, M. Segl, and G. Wefer, (1997).Reconstruction of past nutrient utilization in the eastern Angola Basin based an sedimentary N-15/N-14 ratios, Paleoceanography, 12(4), 604– 614.
Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J.van der Linden, and D. Xiaosu, Eds., (2001): Climate Change 2001: The Scientific Basis: Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 881 pp.
HUNT,J.M. (1970). The significance of carbon isotope variations in marine sediments. In G. D. Hobson and G. C. Spears (editors), Advances in organic geochemistry, pp. 2735.
Jeffrey, A.W.A., Brooks, J.M., Pflaum, R.C., Sackett, W.M., (1983). Vertical trends in particulate organic-carbon C-13-C-12 ratios in the upper water column. Deep-Sea Research 30, 971–983.
Klimaatveranderingen, http://www.klimaatgek.nl/cms/
Kharaka, Y.K., and Mariner, R.H., (2005), Geothermal systems, in Aggarwal, P.K., Gat, J.R., and Froehlich, K.F.O., eds., Isotopes in the Water Cycle: Past, Present, and Future of a Developing Science: Springer, Dordrecht, p. 243-270.
Kharaka, Y.K., Thordsen, J.J., Hovorka, S.D., Nance, H.S., Cole, D.R., Phelps, T.J., Knauss, and K.G., (2009). Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA. Applied Geochemistry, v. 24, no. 6, p. 1106-1112.
Koide, M., A. Soutar & E.D. Goldberg. (1972). Marine geochronology with 210Pb. Earth Planet. Sci. Lett., 14: 442-446.
Krey, P. W., and B. Krajewski, (1970). Comparison of atmospheric transport model calculations with observations of radioactive debris, J. Geophys. Res., 75, 2901–2908.
Krishnaswamy, S., Lal, D., Martin, J. M. & Meybeck, M., (1971). Geochronology of lake sediments. Earth planet. Sci. Lett. I 1: 407 414.
Lewis RC, Coale KH, Edwards BD, Marot M, Douglas JN, Burton EJ (2002) Accumulation rate and mixing of the shelf sediments in the Monterey Bay National Marine Sanctuary. Mar Geol 181: 157-169
Liu, J.T., Lin, H.L., (2004). Sediment dynamics in a submarine canyon: a case of river–sea interaction. Mar. Geol. 207, 55–81.
Liu, J.T., Liu, K., Huang, J.C., (2002). The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology 181, 357–386.
Martin, J. M., & Windom, H. L., (1991). Present and future roles of ocean margins in regulating marine biogeochemical cycles of trace elements. In R. F. C. Mantoura ,eds, Ocean margin processes in global change. Report, Dahlem workshop, Berlin, 1990 ,pp. 45– 67. Wiley.
Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.) (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp.
Meyers, P. A., (1997). Organic geochemical proxies of paleoceanographic , paleolimnologic, and paleoclimatic processes. Org. Geochem. 27: 213–250.
Middelburg JJ, Nieuwenhuize J (1998) Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Mar Chem 60:217–225
Miller, K.M., Heit, M., (1986). A time resolution methodology for assessing the quality of lake sediment cores that are dated by 137Cs. Limnol. Oceanogr. 31, 1292–1300.
Minagawa, M., Wada, E., (1986). Nitrogen isotope ratios of red tide organisms in the East China Sea: a characterization of biological nitrogen fixation. Marine Chemistry 19, 245–259.
Olden C M, Unger A J., (2003). On leakage and seepage from geologic carbon sequestration sites: unsaturated zone attenuation. Vadoes Zone Journal, 2: 287~296.
Orr J.C. et al., (2005). Anthropogenic ocean acidification over the Twenty-First Century and its impact on calcifying organisms. Nature, 437, 681-686.
Prahl, F.G., Bennett, J.T., Carpenter, R., (1980). The early diagenesis aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington. Geochemica et Cosmochimica Acta 44, 1967–1976.
Radakovitch, O., Heussner, S., (1999). Fluxes and budget of 210Pb on the continental margin of the Bay of Biscay (northeastern Atlantic). Deep-Sea Research II 46, 2175-2203.
Rashid, M.A., Reinson, G.E., (1979). Organic matter in surficial sediments of the Miramichi Estuary, New Brunswick, Canada. Estuarine and Coastal Marine Science 8, 23–36.
Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The sea, Vol 2. The composition of sea-water comparative and descriptive oceanography. Interscience Publishers, New York, p 26–77
Sackett W. M. (1964) The depositional history and isotopic organic carbon composition of marine sediments. Mar. Geol. 2, 173–185.
Shackleton, N. J. (1967), Oxygen isotope analyses and paleotemperatures reassessed, Nature, 215, 15–17.
Shaffer, G, (1993). Effects of the marine biota on global carbon cycling, in The global carbon cycle, edited by M.Heimann, vol. 115 of NATO ASI, pp.431-455, Springer Verlag, Berlin, 1993.
Sundquist, E.T., Burruss, R.C., Faulkner, S.P., Gleason, R.A., Harden, J.W., Kharaka, Y.K., Tieszen, L.L., and Waldrop, M.P., (2008), Carbon Sequestration to Mitigate Climate Change: U.S. Geological Survey, Fact Sheet 2008–3097, 4p.
Sweeney, R.E., Liu, K.K., Kaplan, I.R., (1978). Oceanic nitrogen isotopes and their uses in determining the source of sedimentary nitrogen in: Stable isotopes in the Earth Sciences, Proc. Int. Symp., New Zealand Dep. Sci. Ind. Res., 599–604..
Thunell, R., Tappa, E., Pride, C. & Kincaid, E. (1999). Sea-surface temperature anomalies associated with the 1997–1998 El Nin˜o recorded in the oxygen isotope composition of planktonic foraminifera. Geology 27, 843–846.
Toggweiler J. R. (1989) Is the downward dissolved organic matter (DOM) flux important in carbon transport? In: Productivity of the ocean: present andpast, W. H. Berger, V. Smetacek and G. Wefer, editors, Wiley, Chichester, pp. 65-83.
Wada E (1980) Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. In: Goldberg ED, Horibe Y & Saruhashi K (Eds) Isotope Marine Chemistry (pp 375–398). Uchida-Rokakuho, Tokyo
Wada, E., Kadonaga, T., Matsuo, S., (1975). 15N abundance in nitrogen of naturally occurring substances and global assessment of denitrification from isotopic viewpoint. Geochemistry Journal 9, 139–148.
Wilson, R.W., F. J. Millero, J. R. Taylor, P. J. Walsh, V. Christensen, S. Jennings, M. Grosell, (2009). Contribution of Fish to the Marine Inorganic Carbon Cycle. Science, 323, pp. 359 – 362.
Wotton, R. S., (1994). Particulate and dissolved organic matter as food. In R. S. Wotton (ed.) The Biology of Particles in Aquatic Systems, 2nd edition. Lewis Publishers, Boca Raton: 235–288
Yu, H., Huang, C., Ku, J., (1991). Morphology and possible origin of Kaoping submarine canyon head off southwest Taiwan. Acta Oceanogr. Taiwan. 27, 40–50.
Zwolsman, J. J. G. van Eck, G. T. M. and Berger, G.,(1996). Spatial and temporal distribution of trace metals in sediments from the Scheldt Estuary, south-west Netherlands. Estuarine, Coastal and Shelf Science 43, 55-79.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw