進階搜尋


下載電子全文  
系統識別號 U0026-2508201016182600
論文名稱(中文) RTX毒素在創傷弧菌抗吞噬作用上所扮演的角色
論文名稱(英文) Role of Vibrio vulnificus RTX toxin in antiphagocytosis
校院名稱 成功大學
系所名稱(中) 微生物及免疫學研究所
系所名稱(英) Department of Microbiology & Immunology
學年度 98
學期 2
出版年 99
研究生(中文) 陳怡璇
研究生(英文) Yi-Hsuan Chen
學號 S4696404
學位類別 碩士
語文別 中文
論文頁數 50頁
口試委員 指導教授-何漣漪
口試委員-吳俊忠
口試委員-鄧景浩
口試委員-陳建華
中文關鍵字 創傷弧菌  毒素  吞噬 
英文關鍵字 vibrio vulnificus  RTX  antiphagocytosis 
學科別分類
中文摘要 創傷弧菌是一種侵入性細菌病原,透過傷口感染或食入汙染海鮮,可造成嚴重的皮膚損傷與敗血症。本實驗室發現該菌所產生的一種稱為RTX的細胞毒素可能藉由對抗吞噬細胞而促進創傷弧菌在感染部位的增殖,進而侵入血流。本論文研究進一步探討RTX毒素如何達成對抗吞噬細胞的功用。我們比較創傷弧菌野生株YJ016與其不產RTX的突變株HL128在殺死吞噬細胞、被吞噬細胞吞噬的數量、在吞噬細胞中的存活力等方面的差異。結果發現,YJ016在moi = 1的條件下,與小鼠巨噬細胞株RAW 264.7細胞共同培養 90分鐘時仍維持細胞膜的完整性。在此狀況下,YJ016的總存活菌數比HL128高約4倍。而以gentamicin保護試驗或吖啶橙-結晶紫染色鏡檢法評估被吞入RAW 264.7細胞內的菌數,則YJ016比HL128低約4倍。不過,YJ016與HL128被吞噬後,在RAW 264.7細胞內的存活率皆相似。使用低溫4℃或cytochalasin D抑制吞噬細胞吞噬作用,可以看到HL128在細胞內菌量因此減少,並且以cytochalasin D抑制吞噬細胞的吞噬能力後,可觀察到HL128的總存活數與YJ016相似。因此,RTX可以保護創傷弧菌對抗巨噬細胞的吞噬作用,但對已被吞噬的細菌,則無提高其胞內存活力的作用。以創傷弧菌感染由小鼠腹腔回收的巨噬細胞,再以吖啶橙-結晶紫染色觀察細菌被吞噬的數量,得到與感染RAW 264.7細胞株時同樣的結果。另一方面,無莢膜突變株JF046感染RAW 264.7細胞後,總存活數與HL128相當,但胞內菌量則明顯較HL128為低。當我們進一步將JF046的rtxA基因刪除後所得到的不產莢膜與RTX的雙突變株YH001在與RAW 264.7共同培養時,其總存活數顯著下降且胞內菌量甚至較HL128為高,顯示在無血清補體作用的條件下,RTX對創傷弧菌抗吞噬細胞吞噬的能力比莢膜重要。
英文摘要 Vibrio vulnificus, an invasive bacterial pathogen, causes severe skin lesions and septicemia in humans via wound infection or ingestion of contaminated seafood. Previous studies in this laboratory have shown that the RTX toxin of V. vulnificus promotes bacterial colonization at the infection site and subsequent invasion into the bloodstream by countering the infiltrating phagocytes. In this study we compared the total surviving and phagocytosed bacterial numbers, and the intracellular survival rate in phagocytes between the wild type strain, YJ016, and ΔrtxA mutant, HL128, to understand how RTX contributes to antiphagocytosis. We found that when coincubated with the mouse macrophage cell line RAW 264.7 at a moi of 1 for 90 min, conditions in which the cells remained viable, YJ016 survived about four-fold better than HL128. On the other hand, compared to YJ016, nearly four-fold more of HL128 were ingested into the RAW 264.7 cells in the gentamicin protection assay, which is consistent with the results of acridine orange-crystal violet stain for detecting the intracellular bacteria. Nevertheless, the phagocytosed bacteria of both YJ016 and HL128 were killed at similar rates. Inhibition of phagocytosis of RAW 264.7 cells by low temperature or cytochalasin D treatment resulted in reduced intracellular number of HL128, and the total survival of HL128 increased to the wild-type level after cytochalasin D treatment of the phagocytes. These results suggest that RTX may prevent phagocytosis of V. vulnificus by the macrophages but have little contribution to the survival of phagocytosed bacteria. The phagocytosis of various V. vulnificus strains by the peritoneal macrophages was similar to that by the RAW264.7 cells when examined by acridine orange-crystal violet stain. The acapsular mutant, JF046, and HL128 survived equally well in the presence of RAW 264.7 cells, but much lower number of JF046 was phagocytosed. We further deleted rtxA from JF046 to obtain an acapsular, ΔrtxA mutant, YH001. The survival of this double mutant in the presence of RAW 264.7 was significantly reduced, and the phagocytosed bacterial number of this mutant was even higher than that of HL128. These results suggest that RTX is more important than the capsule in protecting the unopsonized V. vulnificus from phagocytosis.
論文目次 中文摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
符號及縮寫 VIII
緒論 1
材料與方法 6
I、實驗菌株、質體及其保存方法 6
II、實驗細胞株培養與保存 6
III、實驗方法 7
1、細胞培養與製備方法 7
(1) 細胞株 (cell line) 7
(2) 小鼠腹腔沖洗細胞 (mouse peritoneal exudates;PECs) 7
2、細胞毒性實驗 (Cytotoxicity test) 8
3、吞噬細胞吞噬實驗 (Phagocytosis killing assay) 8
(1) 細菌總存活數 9
(2) 吞噬細胞吞噬菌量 9
(3) 被吞噬細菌存活數 9
(4) 吞噬抑制實驗 9
4、吖啶橙-結晶紫染色 (Acridine orange-crystal violet stain) 10
5、突變株之建構與分離 10
(1) 接合作用 (Conjugation) 10
(2) 蔗糖培養基與抗生素培養基篩選 11
(3) 聚合酶連鎖反應 (polymerase chain reaction; PCR) 11
(4) 洋菜膠電泳分析 (Agarose gel electrophoresis) 12
(5) 菌落型態 (characteristic of bacteria) 12
6、生長曲線 (Growth curve) 12
7、細菌黏附細胞之能力 (Bacteria adhesion assay) 12
結果 13
I. RTX對吞噬細胞的毒殺性 13
(1) RTX與cytolysin突變株對不同吞噬細胞之毒殺性 13
(2) RTX與cytolysin突變株在不同moi下對RAW 264.7細胞之毒殺性 13
II. RTX對創傷弧菌抗吞噬作用的貢獻 14
(1) 野生株與ΔrtxA突變株菌感染RAW 264.7細胞時細菌的存活 14
(2) 野生株與ΔrtxA突變株感染RAW 264.7細胞時被吞噬的菌量 14
(3) 野生株與ΔrtxA突變株被吞噬後在RAW 264.7細胞內的存活能力 15
(4) 野生株與ΔrtxA突變株感染小鼠腹腔巨噬細胞吞噬作用的情形 15
(5) 生物二型野生株與ΔrtxA突變株感染RAW 264.7細胞時被吞噬的菌量 15
(6) 吞噬抑制實驗 16
III. RTX與莢膜在創傷弧菌抗吞噬作用上功能的差異 16
(1) 突變株的確認,生長曲線與對細胞的黏附能力 17
(2) RTX與莢膜對創傷弧菌存活與被吞噬菌量的影響 17
討論 18
參考文獻 23
圖表集 27
附錄 48
自述 50
參考文獻 1. Allison AC, Davies P, De Petris S. 1971. Role of contractile microfilaments in macrophage movement and endocytosis. Nat New Biol 232: 153-5
2. Amaro C, Biosca EG. 1996. Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Appl Environ Microbiol 62: 1454-7
3. Amaro C, Biosca EG, Fouz B, Garay E. 1992. Electrophoretic analysis of heterogeneous lipopolysaccharides from various strains of Vibrio vulnificus biotypes 1 and 2 by silver staining and immunoblotting. Curr Microbiol 25: 99-104
4. Amaro C, Hor LI, Marco-Noales E, Bosque T, Fouz B, Alcaide E. 1999. Isolation of Vibrio vulnificus serovar E from aquatic habitats in Taiwan. Appl Environ Microbiol 65: 1352-5
5. Bisharat N, Agmon V, Finkelstein R, Raz R, Ben-Dror G, Lerner L, Soboh S, Colodner R, Cameron DN, Wykstra DL, Swerdlow DL, Farmer JJ, 3rd. 1999. Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group. Lancet 354: 1421-4
6. Blake PA, Merson MH, Weaver RE, Hollis DG, Heublein PC. 1979. Disease caused by a marine Vibrio. Clinical characteristics and epidemiology. N Engl J Med 300: 1-5
7. Bush CA, Patel P, Gunawardena S, Powell J, Joseph A, Johnson JA, Morris JG. 1997. Classification of Vibrio vulnificus strains by the carbohydrate composition of their capsular polysaccharides. Anal Biochem 250: 186-95
8. Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, Liu YM, Chen HJ, Shen AB, Li JC, Su TL, Shao CP, Lee CT, Hor LI, Tsai SF. 2003. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 13: 2577-87
9. Donnenberg MS, Kaper JB. 1991. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59: 4310-7
10. Elmore SP, Watts JA, Simpson LM, Oliver JD. 1992. Reversal of hypotension induced by Vibrio vulnificus lipopolysaccharide in the rat by inhibition of nitric oxide synthase. Microb Pathog 13: 391-7
11. Ernst JD. 2000. Bacterial inhibition of phagocytosis. Cell Microbiol 2: 379-86
12. Fan JJ, Shao CP, Ho YC, Yu CK, Hor LI. 2001. Isolation and characterization of a Vibrio vulnificus mutant deficient in both extracellular metalloprotease and cytolysin. Infect Immun 69: 5943-8
13. Gander RM, LaRocco MT. 1989. Detection of piluslike structures on clinical and environmental isolates of Vibrio vulnificus. J Clin Microbiol 27: 1015-21
14. Griffin FM, Jr., Griffin JA, Leider JE, Silverstein SC. 1975. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med 142: 1263-82
15. Halow KD, Harner RC, Fontenelle LJ. 1996. Primary skin infections secondary to Vibrio vulnificus: the role of operative intervention. J Am Coll Surg 183: 329-34
16. Hlady WG, Klontz KC. 1996. The epidemiology of Vibrio infections in Florida, 1981-1993. J Infect Dis 173: 1176-83
17. Hollis DG, Weaver RE, Baker CN, Thornsberry C. 1976. Halophilic Vibrio species isolated from blood cultures. J Clin Microbiol 3: 425-31
18. Horstmann RD, Sievertsen HJ, Knobloch J, Fischetti VA. 1988. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc Natl Acad Sci U S A 85: 1657-61
19. Hyams C, Camberlein E, Cohen JM, Bax K, Brown JS. 2010. The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms. Infect Immun 78: 704-15
20. Joel D. Ernst, Stendahl O. 2006, September. Phagocytosis of Bacteria and Bacterial Pathogenicity
21. Kaspar CW, Tamplin ML. 1993. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol 59: 2425-9
22. Kim SY, Lee SE, Kim YR, Kim CM, Ryu PY, Choy HE, Chung SS, Rhee JH. 2003. Regulation of Vibrio vulnificus virulence by the LuxS quorum-sensing system. Mol Microbiol 48: 1647-64
23. Kim YR, Lee SE, Kook H, Yeom JA, Na HS, Kim SY, Chung SS, Choy HE, Rhee JH. 2008. Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cell Microbiol 10: 848-62
24. Klontz KC, Lieb S, Schreiber M, Janowski HT, Baldy LM, Gunn RA. 1988. Syndromes of Vibrio vulnificus infections. Clinical and epidemiologic features in Florida cases, 1981-1987. Ann Intern Med 109: 318-23
25. Koenig KL, Mueller J, Rose T. 1991. Vibrio vulnificus sepsis presenting as leg pain and lower extremity rash. Am J Emerg Med 9: 523-4
26. Kuhnert P, Heyberger-Meyer B, Burnens AP, Nicolet J, Frey J. 1997. Detection of RTX toxin genes in gram-negative bacteria with a set of specific probes. Appl Environ Microbiol 63: 2258-65
27. Kumamoto KS, Vukich DJ. 1998. Clinical infections of Vibrio vulnificus: a case report and review of the literature. J Emerg Med 16: 61-6
28. Lally ET, Hill RB, Kieba IR, Korostoff J. 1999. The interaction between RTX toxins and target cells. Trends Microbiol 7: 356-61
29. Lee BC, Lee JH, Kim MW, Kim BS, Oh MH, Kim KS, Kim TS, Choi SH. 2008. Vibrio vulnificus rtxE is important for virulence, and its expression is induced by exposure to host cells. Infect Immun 76: 1509-17
30. Lee CT, Amaro C, Wu KM, Valiente E, Chang YF, Tsai SF, Chang CH, Hor LI. 2008. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. J Bacteriol 190: 1638-48
31. Lee JH, Rho JB, Park KJ, Kim CB, Han YS, Choi SH, Lee KH, Park SJ. 2004. Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun 72: 4905-10
32. Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB, Calia KE, Calderwood SB, Fraser C, Mekalanos JJ. 1999. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A 96: 1071-6
33. Linkous DA, Oliver JD. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett 174: 207-14
34. Luo, Y., and M. E. Dorf. 1997. Isolation of mouse neutrophils. In Current Protocols in Immunology, Vol: 3.20.1–3.20.6.
35. Miliotis MD. 1991. Acridine orange stain for determining intracellular enteropathogens in HeLa cells. J Clin Microbiol 29: 830-1
36. Musher DM. 1989. Cutaneous manifestations of bacterial sepsis. Hosp Pract (Off Ed) 24: 71-5, 80-2, 92 passim
37. O'Neill KR, Jones SH, Grimes DJ. 1992. Seasonal incidence of Vibrio vulnificus in the Great Bay estuary of New Hampshire and Maine. Appl Environ Microbiol 58: 3257-62
38. Paulnock DM. 2000. Macrophages: a practical approach Oxford University Press, USA
39. Ramarao N, Gray-Owen SD, Backert S, Meyer TF. 2000. Helicobacter pylori inhibits phagocytosis by professional phagocytes involving type IV secretion components. Mol Microbiol 37: 1389-404
40. Rosqvist R, Bolin I, Wolf-Watz H. 1988. Inhibition of phagocytosis in Yersinia pseudotuberculosis: a virulence plasmid-encoded ability involving the Yop2b protein. Infect Immun 56: 2139-43
41. Sansonetti P. 2001. Phagocytosis of bacterial pathogens: implications in the host response. Semin Immunol 13: 381-90
42. Satchell KJ. 2007. MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect Immun 75: 5079-84
43. Shao CP, Hor LI. 2000. Metalloprotease is not essential for Vibrio vulnificus virulence in mice. Infect Immun 68: 3569-73
44. Silverstein SC, Steinman RM, Cohn ZA. 1977. Endocytosis. Annu Rev Biochem 46: 669-722
45. Simpson LM, Oliver JD. 1983. Siderophore production by Vibrio vulnificus. Infect Immun 41: 644-9
46. Simpson LM, White VK, Zane SF, Oliver JD. 1987. Correlation between virulence and colony morphology in Vibrio vulnificus. Infect Immun 55: 269-72
47. Steinman RM, Moberg CL. 1994. Zanvil Alexander Cohn 1926-1993. J Exp Med 179: 1-30
48. Strom MS, Paranjpye RN. 2000. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect 2: 177-88
49. Vollberg CM, Herrera JL. 1997. Vibrio vulnificus infection: an important cause of septicemia in patients with cirrhosis. South Med J 90: 1040-2
50. Warnock EW, 3rd, MacMath TL. 1993. Primary Vibrio vulnificus septicemia. J Emerg Med 11: 153-6
51. Welch RA. 2001. RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol 257: 85-111
52. Wright AC, Powell JL, Kaper JB, Morris JG, Jr. 2001. Identification of a group 1-like capsular polysaccharide operon for Vibrio vulnificus. Infect Immun 69: 6893-901
53. Wright AC, Simpson LM, Oliver JD. 1981. Role of iron in the pathogenesis of Vibrio vulnificus infections. Infect Immun 34: 503-7
54. Yeager LA, Chopra AK, Peterson JW. 2009. Bacillus anthracis edema toxin suppresses human macrophage phagocytosis and cytoskeletal remodeling via the protein kinase A and exchange protein activated by cyclic AMP pathways. Infect Immun 77: 2530-43
55. Zuppardo AB, Siebeling RJ. 1998. An epimerase gene essential for capsule synthesis in Vibrio vulnificus. Infect Immun 66: 2601-6
56. 王瑞烽. 2004, July. 創傷弧菌參與莢膜多醣體合成之基因群的比較基因體學分析. 國立成功大學微生物及免疫學研究所碩士論文
57. 李俊德. 2008, March. Identification and characterization of a common virulence plasmid in eel-pathogenic Vibrio vulnificus. 國立成功大學基礎醫學研究所博士論文
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw