進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508201012124500
論文名稱(中文) Ras正向調控基因RbAp46在細胞株及小鼠致癌過程中所扮演的角色
論文名稱(英文) The role of RbAp46, a Ras up-regulated gene, in tumorigenesis both in vitro and in vivo
校院名稱 成功大學
系所名稱(中) 微生物及免疫學研究所
系所名稱(英) Department of Microbiology & Immunology
學年度 98
學期 2
出版年 99
研究生(中文) 曾鈺芬
研究生(英文) Yu-Fen Tseng
學號 S4697412
學位類別 碩士
語文別 英文
論文頁數 53頁
口試委員 口試委員-呂增宏
口試委員-謝長奇
指導教授-劉校生
中文關鍵字 RbAp46  Ras  腫瘤新生 
英文關鍵字 RbAp46  Ras  tumorigenesis 
學科別分類
中文摘要 Ras 蛋白質在細胞內參與調控細胞的增生、轉型以及腫瘤細胞之侵犯與轉移。RECK (reversion-inducing-cysteine-rich protein with Kazal motifs) 經由抑制 matrix metalloproteinases (MMPs) 之活性抑制腫瘤細胞之侵犯性轉移和血管新生。有研究指出Ras活化會增強 histone deacetylase 第一型複合物 (HDAC1) 結合在RECK啟動子上的Sp1結合位置以抑制 RECK 表現。Retinoblastoma associated protein 46 (RbAp46) 最早被發現能與 RB 蛋白質結合,並且參與在 HDAC 複合物中,進而能抑制基因之轉錄,而細胞內的 histone 的調控與腫瘤的形成和轉移有關。因此,RbAp46 在腫瘤形成過程中也許扮演重要的角色。我們實驗室之前已證明 RbAp46 是一個受到 Ras 正向調控的基因,並發現 RbAp46 可以和 HDAC1 與 Sp1 形成複合物。本研究證實這複合物可以在細胞內結合到 RECK 啟動子上,若利用反轉錄病毒攜帶特異性小髮夾 RNA ( shRNA) 抑制 Ras 或是 RbAp46 之表現,可使 RECK 的表現增加,並且有效抑制細胞的 MMP9 的活性與侵犯能力。在癌細胞轉移的小鼠模式中,抑制 RbAp46 之表現會減少肺部的腫瘤形成。我們亦證實 Ha-ras 過度表達之細胞 (7-4 Z3) 確實能轉移到肺的組織。另外在 Ha-ras 所誘導的腫瘤新生過程裡,若是增加外源 RbAp46表現則會抑制該細胞的增生,並且於小鼠中抑制腫瘤的形成。我們亦比較膀胱癌的臨床檢體中發現過度表現突變的 Ras 會伴隨 RbAp46 的表現提高,而 RECK 的蛋白量則相對減少。總言之,當 Ras 蛋白質過量表現時,會活化 RbAp46 的表現,透過抑制 RECK 的表現促進腫瘤細胞之移動與侵犯的能力;而在另一方面,又可以透過抑制細胞增生而抑制腫瘤新生之形成。本研究之發現增進我們對 Ras 相關之致癌機制之瞭解。
英文摘要 Ras protein plays important roles in cell proliferation, invasion, and tumor metastasis. RECK (the reversion-inducing cysteine rich protein with Kazal motifs) is a metastasis inhibitor, which suppresses matrix metalloproteinases (MMPs) in the metastatic cascade. It has been reported that Ras induces Sp1 and HDAC1 to form a complex and bind to the RECK promoter to suppress its activity. RbAp46 (retinoblastoma associated protein 46) binds to the RB affinity column and is a component of HDAC complexes which transcriptionally repress gene expression. We previously identified that RbAp46 is a Ras up-regulated gene by suppressive subtractive hybridization PCR. Here, we demonstrated that RbAp46 is a component of the Sp1/HDAC1 complex. We further revealed that this complex bound to the RECK promoter in the cell by chromatin immunoprecipitation assay. Ras suppressing RECK expression through up-regulation of RbAp46 was demonstrated by Ras and RbAp46 shRNA lentivirus. Our data also showed that knockdown of Ras or RbAp46 expression decreased cell invasion by transwell assay and MMP9 secretion by MMP9 assay kit, SensoLyte® 520. Moreover, suppression of RbAp46 in 7-4 cells (a NIH3T3 derivate harboring an inducible Ha-ras oncogene) decreased nodules formation of the lung in the mouse-xenograft model. We also demonstrated that the 7-4-Z3 cells (harboring a β-galactosidase gene) indeed migrated from tumor to the lung tissue. Over-expression of exogenous RbAp46 in 7-4 cells suppressed Ha-rasval12 induced cell proliferation in vitro and tumor formation in vivo. Finally, Over-expression of mutant Ras and RbAp46 associated with low expression of RECK in clinical bladder cancer tissues compared to normal bladder tissues were detected. In summary, we reveal that Ras up-regulates RbAp46, which induces cell invasion through inhibition of RECK expression and suppresses tumor formation through reducing the cell proliferation in tumorigenesis. Our findings increase the knowledge of Ras-related tumorigenesis.
論文目次 中文摘要………………………………………………………………………….….I
Abstract……………………………………………………………………………..II
致謝…………………………………………………………………………….…………III
Introduction
I. Role of Ras in tumorigenesis………………………………..…………………1
II. RbAp46 and tumorigenesis…………………………………………………….2
III. Overview of RECK protein and its role on tumor metastasis…….……………3
IV. Role of RbAp46 and RECK in Ras-related tumorigenesis…………………….5
Materials and Methods
I. Cell line and cell culture……………………………………………..………...6
II. IPTG induction…………………………………………………………..…….7
III. Transfection……………………………………………………………….…...7
IV. Lentiviral shRNA infection…………………………………………..………..7
V. Western blot analysis…………………………………………………...……...8
VI. Chromatin immunoprecipitation assay………………………………….9
VII. Tranwell invasion assay………………………………………………...10
VIII. Measuring MMP9 activity……………………………………………10
IX. Lentiviral production…………………………………………………..11
X. Experimental metastatic assay in mice………………………………12
XI. Real time PCR…………………………………………………..........13
XII. Tumor embedding, sectioning and X-gal staining……………………….......14
XIII. BrdU staining assay……………………………………………………….14
XIV. MTT assay………………...………………………………………15
XV. Tumor formation……………………………………………………………15
XVI. Immunoprecipitation…………………………………………………………16
XVII. Statistical analysis…………………………………………………………....16
Results
I. RbAp46 was up-regulated by Ha-ras oncogene……………………17
II. Suppression or Ras and RbAp46 increased RECK expression……….....17
III. RbAp46 interacted with HDAC1 as well as Sp1, and bound to the Sp1site in RECK promoter in 7-4 cells………………………………….18
IV. RbAp46 suppressed cell invasion and negative regulated the MMP9 activity…………………………….……………………………….19
V. Suppression of RbAp46 decreased nodule formation and lung weight and in mouse-xenograft model……………………………………………20
VI. Over-expression of exogenous RbAp46 in 7-4 cells decreased tumor formation in mice…………………………………………………………………21
VII. Over-expression of RbAp46 suppressed cell proliferation.............................................22
VIII. A correlation among Ras, RbAp46, and RECK was detected in clinical bladder cancer tissues...............22
IX. RbAp46 interacted with Sp1 was detected by immonoprecipitation in 7-4 cells...........………………………………...23
Discussion…………………………………………………………………………....................24
References……………………………………………………………………......................29
Table and Figure List
Figure 1 The expression of Ras protein correlated with the expression of RbAp46 in NIH3T3 and human T24 cells……......34
Figure 2 Expression level of Ras and RbAp46 protein inversely correlated with RECK protein in bladder cancer T24 cells.................................................35
Figure 3 RbAp46 interacted with HDAC1 as well as Sp1 and bound to the Sp1 site in the RECK promoter in 7-4 cells...36
Figure 4 Silencing Ras or RbAp46 expression decreased invasive activity of bladder cancer T24 cells……...........37
Figure 5 Silencing Ras or RbAp46 expression decreased MMP9 activity of T24 cells..................................………39
Figure 6 RECK expression, lung weight and metastasis of 7-4 Z3 cells in the presence or absence of IPTG together with or without RbAp46 shRNA treatment in nude mice..……….......41
Figure 7 The suppressive effect of exogenic RbAp46 overexpression on Ras-induced tumor formation in SCID mice......................................................44
Figure 8 The suppressive effect of exogenic RbAp46 over-expression on Ras-induced proliferation of 7-4 cells......46
Figure 9 Correlation of the expression of mutant Ras, RbAp46, and RECK proteins in the bladder cancer patient specimens.............................................…………47
Figure 10 Association of RbAp46 with Sp1 increased after IPTG induction of Ras over-expression in 7-4 cells........48
Appendix List
Appendix 1. RbAp46 is up-regulated by Ha-ras oncogene in bladder cancer cell line T1R1.............................49
Appendix 2. The interaction among RbAp46, HDAC1 and Sp1...50
Appendix 3. RbAp46 is involved in three major histone deacetylase (HDAC) complexes: SIN3, NuRD, and PcG complex.51
Appendix 4. Plasmids for lentiviral production............52
參考文獻 Ach RA, Taranto P, Gruissem W (1997). A conserved family of WD-40 proteins binds to the retinoblastoma protein in both plants and animals. Plant Cell 9: 1595-606.
Chambers RC, Laurent GJ (2002). Coagulation cascade proteases and tissue fibrosis. Biochem Soc Trans 30: 194-200.
Chang CK, Hung WC, Chang HC (2008). The Kazal motifs of RECK protein inhibit MMP-9 secretion and activity and reduce metastasis of lung cancer cells in vitro and in vivo. J Cell Mol Med 12: 2781-9.
Chang HC, Cho CY, Hung WC (2007). Downregulation of RECK by promoter methylation correlates with lymph node metastasis in non-small cell lung cancer. Cancer Sci 98: 169-73.
Chang HC, Liu LT, Hung WC (2004). Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK. Cell Signal 16: 675-9.
Cheng DE (2006). Thesis of the regulation of Ras upregulated RbAp46 and BNIP3 genes and Ras induced autophagy.
Choi YS, Jeong S (2005). PI3-kinase and PDK-1 regulate HDAC1-mediated transcriptional repression of transcription factor NF-kappaB. Mol Cells 20: 241-6.
Clark JC, Thomas DM, Choong PF, Dass CR (2007). RECK--a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer. Cancer Metastasis Rev 26: 675-83.
Doetzlhofer A et al. (1999). Histone deacetylase 1 can repress transcription by binding to Sp1. Mol Cell Biol. 19: 5504-11.
Downward J (2003). Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3: 11-22.
Fisher JF, Mobashery S (2006). Recent advances in MMP inhibitor design. Cancer Metastasis Rev 25: 115-36.
Giri R, Yeh HH, Wu CH, Liu HS (2008). SUMO-1 overexpression increases RbAp46 protein stability and suppresses cell growth. Anticancer Res 28: 3749-56.
Grzenda A, Lomberk G, Zhang JS, Urrutia R (2009). Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta 1789: 443-50.
Guan LS, Li GC, Chen CC, Liu LQ, Wang ZY (2001). Rb-associated protein 46 (RbAp46) suppresses the tumorigenicity of adenovirus-transformed human embryonic kidney 293 cells. Int J Cancer 93: 333-8.
Guan LS, Rauchman M, Wang ZY (1998). Induction of Rb-associated protein (RbAp46) by Wilms' tumor suppressor WT1 mediates growth inhibition. J Biol Chem 273: 27047-50.
Hsieh CC, Liu HS (2009). Effect of Ha-ras val12 on nm23 expression, tumor formation and metastasis of the transformants and immunomodulation in tumor-bearing mice.
Hsu MC, Chang HC, Hung WC (2006). HER-2/neu represses the metastasis suppressor RECK via ERK and Sp transcription factors to promote cell invasion. J Biol Chem 281: 4718-25.
Hsu YC (2004). Thesis of characterization and functional studies of two Ras up-regulated genes: BNIP3 and RBBP7.
Huang S, Lee WH, Lee EY (1991). A cellular protein that competes with SV40 T antigen for binding to the retinoblastoma gene product. Nature 350: 160-2.
Issaq SH, Lim KH, Counter CM. (2010). Mol Cancer Res, Vol. 8, pp 223-31.
Jaejoon Won JY, and Tae Kook Kim (2002). Sp1 and Sp3 Recruit Histone Deacetylase to Repress Transcription of Human Telomerase Reverse Transcriptase (hTERT) Promoter in Normal Human Somatic Cells. J Biol Chem 277: 38230-38238,.
Jeon HW, Lee YM (2010). Inhibition of histone deacetylase attenuates hypoxia-induced migration and invasion of cancer cells via the restoration of RECK expression. Mol Cancer Ther 9: 1361-70.
Kerppola TK (2009). Polycomb group complexes--many combinations, many functions. Trends Cell Biol 19: 692-704.
Laduron S, Deplus R, Zhou S, Kholmanskikh O, Godelaine D, De Smet C et al (2004). MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription. Nucleic Acids Res 32: 4340-50.
Li GC, Guan LS, Wang ZY (2003). Overexpression of RbAp46 facilitates stress-induced apoptosis and suppresses tumorigenicity of neoplastigenic breast epithelial cells. Int J Cancer 105: 762-8.
Li GC, Wang ZY (2006). Constitutive expression of RbAp46 induces epithelial-mesenchymal transition in mammary epithelial cells. Anticancer Res 26: 3555-60.
Liu HS, Scrable H, Villaret DB, Lieberman MA, Stambrook PJ (1992). Control of Ha-ras-mediated mammalian cell transformation by Escherichia coli regulatory elements. Cancer Res 52: 983-9.
Loayza-Puch F, Yoshida Y, Matsuzaki T, Takahashi C, Kitayama H, Noda M (2010). Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs. Oncogene 29: 2638-48.
Malumbres M, Barbacid M (2003). RAS oncogenes: the first 30 years. Nat Rev Cancer 3: 459-65.
Malumbres M, Pellicer A (1998). RAS pathways to cell cycle control and cell transformation. Front Biosci 3: 887-912.
Nicolas E, Morales V, Magnaghi-Jaulin L, Harel-Bellan A, Richard-Foy H, Trouche D (2000). RbAp48 belongs to the histone deacetylase complex that associates with the retinoblastoma protein. J Biol Chem 275: 9797-804.
Qian YW, Lee EY (1995). Dual retinoblastoma-binding proteins with properties related to a negative regulator of ras in yeast. J Biol Chem 270: 25507-13.
Riccio A (2010). New endogenous regulators of class I histone deacetylases. Sci Signal 3: pe1.
Ruggieri R, Tanaka K, Nakafuku M, Kaziro Y, Toh-e A, Matsumoto K (1989). MSI1, a negative regulator of the RAS-cAMP pathway in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 86: 8778-82.
Sasahara RM, Takahashi C, Noda M (1999a). Involvement of the Sp1 site in ras-mediated downregulation of the RECK metastasis suppressor gene. Biochem Biophys Res Commun 264: 668-75.
Sasahara RM, Takahashi C, Sogayar MC, Noda M (1999b). Oncogene-mediated downregulation of RECK, a novel transformation suppressor gene. Braz J Med Biol Res 32: 891-5.
Scotti ML, Bamlet WR, Smyrk TC, Fields AP, Murray NR (2010). Protein kinase Ciota is required for pancreatic cancer cell transformed growth and tumorigenesis. Cancer Res 70: 2064-74.
Simizu S, Takagi S, Tamura Y, Osada H (2005). RECK-mediated suppression of tumor cell invasion is regulated by glycosylation in human tumor cell lines. Cancer Res 65: 7455-61.
Steeg PS (1989). Search for metastasis suppressor genes. Invasion Metastasis 9: 351-9.
Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K et al (1998). Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci U S A 95: 13221-6.
Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996). Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87: 95-104.
Wang CL, Wang CI, Liao PC, Chen CD, Liang Y, Chuang WY et al (2009). Discovery of retinoblastoma-associated binding protein 46 as a novel prognostic marker for distant metastasis in nonsmall cell lung cancer by combined analysis of cancer cell secretome and pleural effusion proteome. J Proteome Res 8: 4428-40.
Webb CP, Van Aelst L, Wigler MH, Woude GF (1998). Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A 95: 8773-8.
Willis-Martinez D, Richards HW, Timchenko NA, Medrano EE (2010). Role of HDAC1 in senescence, aging, and cancer. Exp Gerontol 45: 279-85.
Wu SY, Lan SH, Cheng DE, Liu HS (2010). BNIP3-mediated autophagy plays a suppressive role in Ras-related tumorigenesis.
Yoon SO, Park SJ, Yun CH, Chung AS (2003). Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol 36: 128-37.
Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D (1997). Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89: 357-64.
Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13: 1924-35.
Zhu X, Demolis N, Jacquet M, Michaeli T (2000). MSI1 suppresses hyperactive RAS via the cAMP-dependent protein kinase and independently of chromatin assembly factor-1. Curr Genet 38: 60-70.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw