進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2507201816535100
論文名稱(中文) SiO2/ScAlN/LiNbO3多層結構應用於高機電耦合係數與低溫度飄移係數之表面聲波元件
論文名稱(英文) SiO2/ScAlN/LiNbO3 Multilayer Structure for High K2 and Low TCF SAW Devices
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 申鈞婷
研究生(英文) Chun-Ting Shen
學號 N56054122
學位類別 碩士
語文別 中文
論文頁數 94頁
口試委員 指導教授-黃肇瑞
口試委員-吳信賢
口試委員-劉全璞
口試委員-齊孝定
口試委員-張高碩
中文關鍵字 表面聲波元件  氮化鈧鋁  鈮酸鋰  二氧化矽  壓電係數  機電耦合係數  溫度飄移係數 
英文關鍵字 Surface acoustic wave device  ScAlN  LiNbO3  SiO2  piezoelectric coefficient  electromechanical coupling factor  temperature coefficient of frequency 
學科別分類
中文摘要 隨著無線通訊的演進,應用於行動裝置濾波器之表面聲波元件(SAW device)往高頻段、高頻寬與高溫度穩定性發展。本研究結合SiO2/ScAlN/LiNbO3作為表面聲波元件材料。Y-128°鈮酸鋰基板具有高機電耦合係數(K2)約5.3 %;然而溫度穩定性不佳,溫度飄移係數(TCF)約為-76 ppm/℃。氮化鈧鋁薄膜之壓電係數(d33)可透過不同的鈧含量達到大幅的提升,代表可進一步提升元件之K2值;但其d33的提升機制尚未明瞭。非晶之二氧化矽薄膜具有正的TCF,常被用為表面聲波元件的溫度補償層;過厚的二氧化矽層則會降低K2值。
將ScxAl1-xN薄膜以反應性磁控雙靶濺鍍的方式沉積於鈮酸鋰基板上,實驗結果顯示,在x=0.23-0.31區間d33快速上升,在x=0.31時達到最大值36.35 pm/V,此時晶體結構會發生(002)面逐漸傾斜之現象,應為相轉換的過程中離子半徑較大的鈧置換特定鋁晶格點,並導入局部晶格應變造成。在鈧晶格點周圍應變提升的情況下,加上Sc-N鍵更高的極性,可誘發更高的壓電效應。x>0.31後,鈧傾向隨機固溶,使結晶性下降、局部應變消失,造成d33大幅降低。進一步將ScAlN/LiNbO3結合不同厚度之二氧化矽薄膜,製作成表面聲波元件。結果顯示,具有ScAlN層之表面聲波元件可有效提升K2至11.01 %,|"TCF" |為55.63 ppm/℃。隨著二氧化矽厚度增加至120 nm,|"TCF" |可下降至42.61 ppm/℃,而K2仍維持10.24 %,顯示此材料具有應用於高頻寬、高溫度穩定性表面聲波元件之潛力。
英文摘要 We report a high electromechanical coupling coefficient (K2) and low temperature coefficient of frequency (TCF) surface acoustic wave (SAW) device on SiO2/ScAlN/LiNbO3 structure. The ScxAl1-xN films (x=0.23, 0.24, 0.26, 0.29, 0.31, 0.34, 0.39) are deposited on Y-128° LiNbO3 substrate by reactive magnetron co-sputtering using Al and Sc as targets. The highest piezoelectric coefficient (d33) value 36.35 pm/V is achieved at x=0.31, which corresponds to the largest (002) tilting presented in 2D-XRD data. The results implied that the enhancement of d33 is caused by the local lattice distortion induced by larger Sc3+ ions. The K2 and |TCF | of SAW devices based on ScAlN/LiNbO3 are 11.1 % and 55.63 ppm/℃, respectively. As the SiO2 thickness increases to 120 nm, the |TCF| is improved to 42.61 ppm/℃, and the K2 is maintained at 10.24 %. The SiO2/ScAlN/LiNbO3 structure have a great potential in high bandwidth and high temperature stability SAW devices.
論文目次 摘要 I
Extended Abstract  II
致謝 XV
總目錄 XVI
圖目錄 XIX
表目錄 XXIV
第一章 緒論 1
1-1. 前言 1
1-2. 研究動機與目的 2
第二章 文獻回顧 7
2-1. 表面聲波元件 7
2-2. 表面聲波元件特性 10
2-2-1. 聲波波速(Vsaw) 10
2-2-2. 機電耦合係數(K2) 11
2-2-3. 溫度飄移係數(TCF)11
2-3. 壓電係數d33 12
2-4. 表面聲波元件材料 14
2-4-1. Y-128° 鈮酸鋰基板 14
2-4-2. C軸取向之氮化鋁薄膜 16
2-4-3. 氮化鈧鋁薄膜 19
2-4-4. 二氧化矽薄膜 24
2-4-5. 表面聲波元件材料比較 24
2-5. 反應性磁控濺鍍 27
第三章 研究方法與實驗步驟 28
3-1. 實驗流程 28
3-2. 濺鍍實驗材料 28
3-3. 濺鍍設備 30
3-4. 濺鍍步驟與條件 31
3-4-1. 基板前處理 31
3-4-2. 氮化鈧鋁薄膜濺鍍流程 31
3-5. 鍍層的分析 33
3-5-1. 成分與化學鍵結分析 33
3-5-2. 二維X光繞射分析 33
3-5-3. 薄膜壓電係數分析 38
3-5-4. 表面與橫截面形貌分析 41
3-5-5. 表面粗糙度分析 41
3-6. 表面聲波元件製作 42
3-7. SiO2/ScAlN/LiNbO3多層結構元件製作 45
3-8. 表面聲波元件量測 45
第四章 結果與討論 48
4-1. 氮化鈧鋁薄膜/鈮酸鋰基板 48
4-1-1. 化學成分分析 48
4-1-2. 一維XRD晶體結構分析 48
4-1-3. 二維XRD晶體結構分析 58
4-1-4. 壓電係數與晶體結構之關係 63
4-1-5. 薄膜表面與橫截面分析 67
4-2. 表面聲波元件性質分析 72
4-2-1. 表面聲波波速與機電耦合係數 72
4-2-2. 溫度飄移係數 77
4-2-3. 元件綜合表現 80
第五章 結論 84
參考文獻 86
參考文獻 [1] A. V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Q. Du, and M. Zahn, "Interdigital sensors and transducers," Proceedings of the Ieee, vol. 92, pp. 808-845, May 2004.
[2] A. Pohl, "A review of wireless SAW sensors," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 47, pp. 317-332, Mar 2000.
[3] H. A. C. Tilmans, W. De Raedt, and E. Beyne, "MEMS for wireless communications: 'from RF-MEMS components to RF-MEMS-SiP'," Journal of Micromechanics and Microengineering, vol. 13, pp. S139-S163, Jul 2003.
[4] O. Ambacher, "Growth and applications of Group III nitrides," Journal of Physics D-Applied Physics, vol. 31, pp. 2653-2710, Oct 1998.
[5] R. Hauser, L. Reindl, and J. Biniasch, High-temperature stability of LiNbO3 based SAW devices, 2003.
[6] J. Kushibiki, Y. Ohashi, and Y. Ono, "Evaluation and selection of LiNbO3 and LiTaO3 substrates for SAW devices by the LFB ultrasonic material characterization system," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 47, pp. 1068-1076, Jul 2000.
[7] R. C. Turner, P. A. Fuierer, R. E. Newnham, and T. R. Shrout, "MATERIALS FOR HIGH-TEMPERATURE ACOUSTIC AND VIBRATION SENSORS - A REVIEW," Applied Acoustics, vol. 41, pp. 299-324, 1994.
[8] L. Wu, P. C. Chen, S. Wu, H. T. Song, and M. C. Chure, "Sputtering highly c-axis-oriented AlN films on Y-128 degrees LiNbO3," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 39, pp. L545-L547, Jun 2000.
[9] S. Wu, Y. C. Chen, and Y. S. Chang, "Characterization of AlN films on Y-128 degrees LiNbO3 by surface acoustic wave measurement," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 41, pp. 4605-4608, Jul 2002.
[10] K. S. Kao, C. C. Cheng, Y. C. Chen, and Y. H. Lee, "The characteristics of surface acoustic waves on AIN/LiNbO3 substrates," Applied Physics a-Materials Science & Processing, vol. 76, pp. 1125-1127, May 2003.
[11] R. Y. Ro, R. Lee, S. Wu, Z. X. Lin, and M. S. Lee, "Propagation Characteristics of Surface Acoustic Waves in AlN/128 degrees Y-X LiNbO3 Structures," Japanese Journal of Applied Physics, vol. 48, Apr 2009.
[12] W. Sean, W. Long, C. Feng-Chih, and C. Jia-Hua, "Temperature Compensation with AlN Film on Y-128° LiNbO 3," Japanese Journal of Applied Physics, vol. 40, p. L471, 2001.
[13] M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, "Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering," Advanced Materials, vol. 21, pp. 593-+, Feb 2009.
[14] M. Akiyama, K. Kano, and A. Teshigahara, "Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films," Applied Physics Letters, vol. 95, p. 3, Oct 2009.
[15] M. Akiyama, K. Umeda, A. Honda, and T. Nagase, "Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films," Applied Physics Letters, vol. 102, p. 4, Jan 2013.
[16] K.-y. Hashimoto, S. Sato, A. Teshigahara, T. Nakamura, and K. Kano, "High-performance surface acoustic wave resonators in the 1 to 3 GHz range using a ScAlN/6H-SiC structure," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 60, pp. 637-642, 2013.
[17] R. Matloub, M. Hadad, A. Mazzalai, N. Chidambaram, G. Moulard, C. S. Sandu, et al., "Piezoelectric Al1-xScxN thin films: A semiconductor compatible solution for mechanical energy harvesting and sensors," Applied Physics Letters, vol. 102, p. 3, Apr 2013.
[18] W. B. Wang, P. M. Mayrhofer, X. L. He, M. Gillinger, Z. Ye, X. Z. Wang, et al., "High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient," Applied Physics Letters, vol. 105, p. 4, Sep 2014.
[19] P. M. Mayrhofer, C. Rehlendt, M. Fischeneder, M. Kucera, E. Wistrela, A. Bittner, et al., "ScAlN MEMS Cantilevers for Vibrational Energy Harvesting Purposes," Journal of Microelectromechanical Systems, vol. 26, pp. 102-112, Feb 2017.
[20] F. Tasnadi, B. Alling, C. Hoglund, G. Wingqvist, J. Birch, L. Hultman, et al., "Origin of the anomalous piezoelectric response in wurtzite Sc(x)Al(1-x)N alloys," Phys Rev Lett, vol. 104, p. 137601, Apr 2 2010.
[21] H. Momida, A. Teshigahara, and T. Oguchi, "Strong enhancement of piezoelectric constants in ScxAl1-xN: First-principles calculations," Aip Advances, vol. 6, p. 11, Jun 2016.
[22] R. Gonzalez-Hernandez, A. Gonzalez-Garcia, and W. Lopez-Perez, "Density functional theory study of the adsorption and incorporation of Sc and Y on the AlN(0001) surface," Journal of Crystal Growth, vol. 443, pp. 1-7, Jun 2016.
[23] R. Mohammad and S. Katircioglu, "FIRST-PRINCIPLES CALCULATIONS FOR THE STRUCTURAL AND ELECTRONIC PROPERTIES OF ScxAl1-xN ALLOYS," International Journal of Modern Physics C, vol. 24, p. 16, Oct 2013.
[24] 陳品宏, "濺鍍高C軸取向氮化鈧鋁薄膜於鈮酸鋰基板上應用於表面聲波元件之特性與壓電性質研究," 碩士, 材料科學及工程學系, 國立成功大學, 台南市, 2015.
[25] P. Wu, N. Emanetoglu, X. Tong, and Y. Lu, "Temperature compensation of SAW in ZnO/SiO/sub 2//Si structure," in Ultrasonics Symposium, 2001 IEEE, 2001, pp. 211-214.
[26] T. Parker and H. Wichansky, "Temperature‐compensated surface‐acoustic‐wave devices with SiO2 film overlays," Journal of Applied Physics, vol. 50, pp. 1360-1369, 1979.
[27] K. Yamanouchi and T. Ishii, "High temperature stable acoustic surface wave substrates of SiO2/LiNbO3 structure with super high coupling," Japanese journal of applied physics, vol. 41, p. 3480, 2002.
[28] H. Nakahata, S. Fujii, K. Higaki, A. Hachigo, H. Kitabayashi, S. Shikata, et al., "Diamond-based surface acoustic wave devices," Semiconductor Science and Technology, vol. 18, p. S96, 2003.
[29] R. Lord, "On Waves Propagated along the Plane Surface of an Elastic Solid," Proceedings of the London Mathematical Society, vol. s1-17, pp. 4-11, 1885.
[30] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity: at the University Press, 1906.
[31] P. Muralt, "Recent progress in materials issues for piezoelectric MEMS," Journal of the American Ceramic Society, vol. 91, pp. 1385-1396, May 2008.
[32] P. Curie and J. Curie, "Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined Faces," Bull. Soc. Min. de France, vol. 3, pp. 90-93, 1880.
[33] L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proceedings of the London Mathematical Society, vol. 17, pp. 4-11, 1885.
[34] L. APC International, Piezoelectric Ceramics: Principles and Applications: APC International, 2011.
[35] R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Applied Physics A, vol. 37, pp. 191-203, 1985.
[36] R. S. Weis and T. K. Gaylord, "Lithium niobate: Summary of physical properties and crystal structure," Applied Physics A, vol. 37, pp. 191-203, 1985/08/01 1985.
[37] S. C. Abrahams and P. Marsh, "Defect Structure Dependence on Composition in Lithium Niobate," Acta Crystallographica Section B, vol. 42, pp. 61-68, 1986.
[38] J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, "Nonstoichiometry and Crystal Growth of Lithium Niobate," Journal of Applied Physics, vol. 42, pp. 1846-1851, 1971.
[39] J. C. Brice, The Properties of Lithium Niobate. The Institute of Electrical Engineers: EMIS Datareviews Series, 1989.
[40] V. V. Zhdanova, V. P. Klyuev, V. V. Lemanov, I. A. Smirnov, and V. V. Tikhonov, "Thermal Properties of Lithium Niobate Crystals," Soviet physics, Solid state, vol. 10, pp. 1360-1362, 1968.
[41] R. R. Clemente, B. Aspar, N. Azema, B. Armas, C. Combescure, J. Durand, et al., "Morphological properties of chemical vapour deposited AlN films," Journal of Crystal Growth, vol. 133, pp. 59-70, 1993.
[42] T. B. Jackson, A. V. Virkar, K. L. More, J. R. B. Dinwiddie, and R. A. Cutler, "High-Thermal-Conductivity Aluminum Nitride Ceramics: The Effect of Thermodynamic, Kinetic, and Microstructural Factors," Journal of the American Ceramic Society, vol. 80, pp. 1421-1435, 1997.
[43] W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, "Epitaxially grown AlN and its optical band gap," Journal of Applied Physics, vol. 44, pp. 292-296, 1973.
[44] M. Morita, K. Tsubouchi, and N. Mikoshiba, "Optical Absorption and Cathodoluminescence of Epitaxial Aluminum Nitride Films," Japanese Journal of Applied Physics, vol. 21, pp. 1102-1103, 1982.
[45] S. Yoshida, S. Misawa, Y. Fujii, S. Takada, H. Hayakawa, S. Gonda, et al., "Reactive molecular beam epitaxy of aluminium nitride," Journal of Vacuum Science & Technology, vol. 16, pp. 990-993, 1979.
[46] M. Ishihara, S. J. Li, H. Yumoto, K. Akashi, and Y. Ide, "Control of preferential orientation of AlN films prepared by the reactive sputtering method," Thin Solid Films, vol. 316, pp. 152-157, 1998.
[47] C. J. Ho, T. K. Shing, and P. C. Li, "Preferred Orientation Control and Characterization of AlN Thin Films Using Reactive Sputtering," Tamkang Journal of Science and Engineering, vol. 7, pp. 1-4, 2004.
[48] X. H. Xu, H. S. Wu, C. J. Zhang, and Z. H. Jin, "Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering," Thin Solid Films, vol. 388, pp. 62-67, 2001.
[49] N. Matsunami, H. Kakiuchida, M. Sataka, and S. Okayasu, "XRD Characterization of AlN Thin Films Prepared by Reactive RF-Sputter Deposition," Advances in Materials Physics and Chemistry, vol. 3, pp. 101-107, 2013.
[50] V. Felmetsger and M. K. Mikhov, Reactive Magnetron Sputtering of Piezoelectric Cr-Doped AlN Thin Films, 2011.
[51] H. Liu, F. Zeng, G. Tang, and F. Pan, "Enhancement of piezoelectric response of diluted Ta doped AlN," Applied Surface Science, vol. 270, pp. 225-230, 2013.
[52] E. Iborra, J. Olivares, M. Clement, J. Capilla, V. Felmetsger, and M. Mikhov, "Piezoelectric and electroacoustic properties of V-doped and Ta-doped AlN thin films," in 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), 2013, pp. 262-265.
[53] M. Akiyama, K. Kano, and A. Teshigahara, "Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films," Applied Physics Letters, vol. 95, p. 162107, 2009.
[54] M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, "Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering," Adv Mater, vol. 21, pp. 593-596, 2009.
[55] A. Teshigahara, K. Hashimoto, and M. Akiyama, "Scandium Aluminum Nitride : Highly Piezoelectric Thin Film for RF SAW Devices in multi GHz Range," in IEEE Ultrasonics Symposium, 2012.
[56] A. D. Corso, M. Posternak, R. Resta, and A. Baldereschi, "Ab initio study of piezoelectricity and spontaneous polarization in ZnO," Physical Review B, vol. 50, pp. 10715-10721, 1994.
[57] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Physical Review B, vol. 56, pp. 10024-10027, Oct 1997.
[58] T. E. Parker and M. B. Schulz, "TEMPERATURE STABLE SURFACE ACOUSTIC-WAVE DELAY-LINES WITH SIO2 FILM OVERLAYS," Ieee Transactions on Sonics and Ultrasonics, vol. SU22, pp. 227-227, 1975.
[59] C. Zhou, Y. Yang, H. Cai, T.-L. Ren, M. Chan, and C. Y. Yang, "Temperature-compensated high-frequency surface acoustic wave device," IEEE Electron Device Letters, vol. 34, pp. 1572-1574, 2013.
[60] K.-y. Hashimoto, M. Kadota, T. Nakao, M. Ueda, M. Miura, H. Nakamura, et al., "Recent development of temperature compensated SAW devices," in Ultrasonics Symposium (IUS), 2011 IEEE International, 2011, pp. 79-86.
[61] H. Nakanishi, H. Nakamura, T. Tsurunari, J. Fujiwara, Y. Hamaoka, and K. Hashimoto, "Good temperature coefficient of frequency SAW resonator on a SiO2/Al/LiNbO3 structure," in 2010 IEEE International Ultrasonics Symposium, 2010, pp. 1298-1301.
[62] K. y. Hashimoto, T. Fujii, S. Sato, T. Omori, A. Changjun, A. Teshigahara, et al., "High Q surface acoustic wave resonators in 2–3 GHz range using ScAlN/single crystalline diamond structure," in 2012 IEEE International Ultrasonics Symposium, 2012, pp. 1-4.
[63] M. Ohring, Materials science of thin films: Elsevier, 2001.
[64] 吳孟穎, "反應性濺鍍高C軸取向氮化鈧鋁鑽石薄膜之特性與壓電性質研究," 碩士, 材料科學及工程學系碩博士班, 國立成功大學, 台南市, 2011.
[65] 廖婉竹, "濺鍍高C軸取向氮化鈧鋁薄膜於類碳鑽/矽基板應用於表面聲波元件之特性與壓電性質研究," 碩士, 材料科學及工程學系, 國立成功大學, 台南市, 2016.
[66] B. B. He, Two-Dimensional X-Ray Diffraction: Wiley, 2011.
[67] C. Rodriguez-Navarro, K. Kudlacz, and E. Ruiz-Agudo, "The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses," American Mineralogist, vol. 97, pp. 38-51, 2012.
[68] R. L. Flemming, "Micro X-ray diffraction (µXRD): a versatile technique for characterization of Earth and planetary materials," Canadian Journal of Earth Sciences, vol. 44, pp. 1333-1346, 2007/09/01 2007.
[69] M. Tang, B. Jiang, W. Zhang, Y. Xiao, Y. Zhou, J. He, et al., "Structural and electrical characterizations of Bi(Zn0.5Ti0.5)O3 doped lead zirconate titanate ferroelectric films with enhanced ferroelectric properties" vol. 520, 2012.
[70] X.-P. Kuang, H.-Y. Zhang, G.-G. Wang, L. Cui, C. Zhu, L. Jin, et al., "AlN films prepared on 6H–SiC substrates under various sputtering pressures by RF reactive magnetron sputtering," Applied Surface Science, vol. 263, pp. 62-68, 2012.
[71] E. Soergel, "Piezoresponse force microscopy (PFM)," Journal of Physics D-Applied Physics, vol. 44, Nov 2011.
[72] M. Sahariah and S. Ghosh, "Dynamical stability and phase transition of BeO under pressure" vol. 107, 2010.
[73] 林欣柔, "反應性濺鍍高A軸取向氮化鈧鋁鑽石薄膜之特性與壓電性質研究," 碩士, 材料科學及工程學系碩博士班, 國立成功大學, 台南市, 2013.
[74] X. H. Xu, H. S. Wu, C. J. Zhang, and Z. H. Jin, "Morphological properties of AIN piezoelectric thin films deposited by DC reactive magnetron sputtering," Thin Solid Films, vol. 388, pp. 62-67, Jun 2001.
[75] W. J. Liauh, S. Wu, J.-L. Huang, D.-F. Lii, Z.-X. Lin, and W.-K. Yeh, "Microstructure and piezoelectric properties of reactively sputtered highly C-axis ScxAl1-xN thin films on diamond-like carbon/Si substrate," Surface and Coatings Technology, vol. 308, pp. 101-107, 2016/12/25/ 2016.
[76] R. Takayama, H. Nakanishi, Y. Iwasaki, H. Nakamura, and R. Goto, "Study of Relationship between Layer Profile of SiO2 and Characteristics of Surface Acoustic Wave Devices in SiO2/Al/LiTaO3 System," Japanese Journal of Applied Physics, vol. 50, p. 6, Jul 2011.
[77] H. Nakanishi, H. Nakamura, T. Tsurunari, J. Fujiwara, Y. Hamaoka, and K. Y. Hashimoto, "Zero Temperature Coefficient of Frequency Surface Acoustic Wave Resonator for Narrow-Duplex-Gap Application on SiO2/Al/LiNbO3 Structure," Japanese Journal of Applied Physics, vol. 50, p. 4, Jul 2011.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw