進階搜尋


下載電子全文  
系統識別號 U0026-2507201814421500
論文名稱(中文) 甲硫胺酸硫氧化物還原酶B在鹽害下的功能分析
論文名稱(英文) Functional study of methionine sulfoxide reductase B under salt stress
校院名稱 成功大學
系所名稱(中) 熱帶植物科學研究所
系所名稱(英) Institute of Tropical Plant Sciences
學年度 106
學期 2
出版年 107
研究生(中文) 邱育新
研究生(英文) Yu-Hsin Chiu
學號 Z36054039
學位類別 碩士
語文別 中文
論文頁數 54頁
口試委員 指導教授-詹明才
共同指導教授-邱啟洲
口試委員-廖麗貞
召集委員-黃浩仁
中文關鍵字 甲硫胺酸硫氧化物還原酶  阿拉伯芥  訊息胜肽 
英文關鍵字 Methionine sulfoxide reductases  Arabidopsis  signaling peptide 
學科別分類
中文摘要 鹽害逆境中除了離子毒性與滲透逆境外,氧化逆境亦是影響植物生長的不利因素。甲硫胺酸硫氧化物還原酶(methionine sulfoxide reductase, MSR)負責修復蛋白質中受氧化損害的甲硫胺酸。本研究挑選在阿拉伯芥DNA微陣列與即時聚合酶連鎖反應中,受到鹽害誘導表現的基因MsrB9作為目標,證實植株地上部MSRB9蛋白受到鹽害逆境誘導。進一步研究發現MSRB9可能為分泌蛋白,並在西方墨點法中偵測到羧基端片段。經阿拉伯芥懸浮細胞培養後,抽取培養液中的分泌蛋白,再利用胺基端標籤技術以及液相層析串聯式質譜儀證實為MSRB9衍生羧基端胜肽(MSRB9-derived peptide, MDP9)。利用HPLC檢測合成胜肽發現MDP9會自體形成多倍體。為了測試MDP9是否擁有生物活性,噴灑合成胜肽於鹽處理植物,證實鹽害逆境中前處理MDP9對比控制組顯著增加抗性,反觀另一合成胜肽MDP8則是降低抗性,相同抗性趨勢也出現在MDP9轉殖植物中對比控制組。總結來說,MsrB9受到鹽害逆境誘導,而羧基端胜肽MDP9可能作為訊息傳遞分子影響鹽害抗性。
英文摘要 Except ion toxicity and osmotic stress, oxidative stress is also a serious factor among plant growth under salt stress. Methionine sulfoxide reductase is responsible for repairing oxidized methionine under oxidative stress. In our study, MsrB8/9 is induced at both microarray and real-time PCR, further investigation also prove MSRB9 is induced under salt stress while MSRB8 is not. Localization of MSRB9 fusion protein surmises that MSRB9 might locate at both cytosol and apoplast. However, we observe a smaller MSRB9 carboxyl group fragment shows up in secrete protein western blot. In order to exam this fragment, secrete protein is used for dimethyl labeling follow with LC/MS/MS to identify this peptide named MDP9 (MSRB9-derived peptide). Artificial synthesized MDP9 shows self-polymerization ability under HPLC analysis. To clarify whether MDP9 has biological function or not, artificial synthesized peptide is sprayed under salt stress. Results show that spraying with MDP9 would enhance salt tolerance as compared to control, on the other hand, spraying MDP8 shows decrease salt tolerance. Similar result is found in MDP9 overexpression lines under salt stress compare to vector control plants. Overall, MSRB9 is induced under salt stress while carboxyl group peptide MDP9 may involve in signal transduction under salt stress.
論文目次 摘要 I
Abstract II
誌謝 XV
目錄 XVI
圖表目錄 XVII
附錄目錄 XVIII
第一章 前言 1
第一節 鹽害對作物影響 1
第二節 植物抗鹽機制 2
第三節 甲硫胺酸硫氧化物還原酶 4
第四節 植物胜肽 5
第五節 實驗目的 8
第二章 材料與方法 9
第一節 實驗材料 9
第二節 實驗方法 9
第三章 結果 17
第一節 MsrB8/9基因表現趨勢受鹽誘導 17
第二節 MSRB8/9蛋白表現趨勢相異 17
第三節 MSRB9蛋白在地上部與地下部表現趨勢 17
第四節 MSRB9可能同時位在細胞質以及質外體 18
第五節 MSRB9片段序列鑑定以及特性 19
第六節 MDP9抗鹽表現型 20
第四章 討論 21
第一節 MsrB9基因表現與蛋白表現的差異 21
第二節 MSRB9蛋白在質外體的運輸 22
第三節 MDP9胜肽特性 23
第四節MDP9切割酵素 24
第五節 MDP8/9噴灑實驗 25
第五章 參考文獻 27
圖表 34
附錄 45

參考文獻 黃薇儒,屏東平原地下水鹽化情形探討。國立臺灣大學環境工程學研究所,109. (2006)。
葉昕祐,雲林縣口湖地區土壤鹽化現象之研究。國立臺灣師範大學地理學系,118. (2006)。
Abramovitch, R.B., Janjusevic, R., Stebbins, C.E., and Martin, G.B. Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proceedings of the National Academy of Sciences of the United States of America 103,8 2851-2856. (2006)
Allakhverdiev, S.I., Sakamoto, A., Nishiyama, Y., Inaba, M., and Murata, N. Ionic and Osmotic Effects of NaCl-Induced Inactivation of Photosystems I and II in Synechococcus sp. Plant Physiology 123,3 1047-1056. (2000)
Apse, M.P., Aharon, G.S., Snedden, W.A., and Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285,5431 1256-1258. (1999)
Astier, J., Rasul, S., Koen, E., Manzoor, H., Besson-Bard, A., Lamotte, O., Jeandroz, S., Durner, J., Lindermayr, C., and Wendehenne, D. S-nitrosylation: an emerging post-translational protein modification in plants. Plant Science 181,5 527-533. (2011)
Badawi, G.H., Kawano, N., Yamauchi, Y., Shimada, E., Sasaki, R., Kubo, A., and Tanaka, K. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiologia plantarum 121,2 231-238. (2004)
Berlett, B.S., and Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. The Journal of biological chemistry 272,33 20313-20316. (1997)
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72 248-254. (1976)
Butenko, M.A., Patterson, S.E., Grini, P.E., Stenvik, G.E., Amundsen, S.S., Mandal, A., and Aalen, R.B. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15,10 2296-2307. (2003)
Chen, S., Li, J., Fritz, E., Wang, S., and Hüttermann, A. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. Forest Ecology and Management 168,1 217-230. (2002)
Chien, P.S., Nam, H.G., and Chen, Y.R. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis. Journal of Experimental Botany 66,17 5301-5313. (2015)
Deng, J., Zhang, G., Huang, F.K., and Neubert, T.A. Identification of protein N-termini using TMPP or dimethyl labeling and mass spectrometry. Methods in Molecular Biology 1295 249-258. (2015)
Esfandiari, E., Shekari, F., Shekari, F., and Esfandiari, M. THE EFFECT OF SALT STRESS ON ANTIOXIDANT ENZYMES' ACTIVITY AND LIPID PEROXIDATION ON THE WHEAT SEEDLING. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 35,1 48-56(2007)
Farrokhi, N., Whitelegge, J.P., and Brusslan, J.A. Plant peptides and peptidomics. Plant Biotechnology Journal 6,2 105-134. (2008)
Faye, L., Boulaflous, A., Benchabane, M., Gomord, V., and Michaud, D. Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23,15 1770-1778. (2005)
Fernandez, A., Hilson, P., and Beeckman, T. GOLVEN peptides as important regulatory signalling molecules of plant development. Journal of Experimental Botany 64,17 5263-5268. (2013)
Fletcher, J.C., Brand, U., Running, M.P., Simon, R., and Meyerowitz, E.M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283,5409 1911-1914. (1999)
Flowers, T.J. Improving crop salt tolerance. Journal of Experimental Botany 55,396 307-319. (2004)
Foreman, J., Demidchik, V., Bothwell, J.H.F., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D.G., Davies, J.M., and Dolan, L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 27,422 442-446. (2003)
Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.-L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sørensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W.V., Figeys, D., and Tyers, M. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 10,415 180-183. (2002)
Hsiao, P.Y., Cheng, C.P., Koh, K.W., and Chan, M.T. The Arabidopsis defensin gene, AtPDF1.1, mediates defence against Pectobacterium carotovorum subsp. carotovorum via an iron-withholding defence system. Scientific Reports 7,1 9175-9188. (2017)
Huang, H., Tudor, M., Su, T., Zhang, Y., Hu, Y., and Ma, H. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell 8,1 81-94. (1996)
Huffaker, A., and Ryan, C.A. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proceedings of the National Academy of Sciences of the United States of America 104,25 10732-10736. (2007)
Ji, H., Pardo, J.M., Batelli, G., Van Oosten, M.J., Bressan, R.A., and Li, X. The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Molecular Plant 6,2 275-286. (2013)
Johnson, E.S. Protein modification by SUMO. Annual Review of Biochemistry 73,1 355-382. (2004)
Kanczewska, J., Marco, S., Vandermeeren, C., Maudoux, O., Rigaud, J.L., and Boutry, M. Activation of the plant plasma membrane H+-ATPase by phosphorylation and binding of 14-3-3 proteins converts a dimer into a hexamer. Proceedings of the National Academy of Sciences of the United States of America 102,33 11675-11680. (2005)
Kaya, A., Koc, A., Lee, B.C., Fomenko, D.E., Rederstorff, M., Krol, A., Lescure, A., and Gladyshev, V.N. Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast. Biochemistry 49,39 8618-8625. (2010)
Kim, J.S., Park, H.M., Chae, S., Lee, T.H., Hwang, D.J., Oh, S.D., Park, J.S., Song, D.G., Pan, C.H., Choi, D., Kim, Y.H., Nahm, B.H., and Kim, Y.K. A pepper MSRB2 gene confers drought tolerance in rice through the protection of chloroplast-targeted genes. PLoS One 9,3 e90588-90604. (2014)
Koc, A., Gasch, A.P., Rutherford, J.C., Kim, H.Y., and Gladyshev, V.N. Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and -independent components of aging. Proceedings of the National Academy of Sciences of the United States of America 101,21 7999-8004. (2004)
Lambers, H., Chapin Iii, F.S., and Pons, T. Plant Physiological Ecology. Springer Science & Business Media New York 80. (2008)
Lee, S.H., Li, C.W., Koh, K.W., Chuang, H.Y., Chen, Y.R., Lin, C.S., and Chan, M.T. MSRB7 reverses oxidation of GSTF2/3 to confer tolerance of Arabidopsis thaliana to oxidative stress. Journal of Experimental Botany 65,17 5049-5062. (2014)
Maas, E.V., and Grattan, S. Crop yields as affected by salinity. Agronomy 38 55-110. (1999)
Marchetti, M.A., Pizarro, G.O., Sagher, D., Deamicis, C., Brot, N., Hejtmancik, J.F., Weissbach, H., and Kantorow, M. Methionine sulfoxide reductases B1, B2, and B3 are present in the human lens and confer oxidative stress resistance to lens cells. Investigative ophthalmology & visual science 46,6 2107-2112. (2005)
Marmiroli, N., and Maestri, E. Plant peptides in defense and signaling. Peptides 56 30-44. (2014)
Mendoza-Cozatl, D.G., Butko, E., Springer, F., Torpey, J.W., Komives, E.A., Kehr, J., and Schroeder, J.I. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. The Plant Journal 54,2 249-259. (2008)
Meng, L., Buchanan Bb Fau - Feldman, L.J., Feldman Lj Fau - Luan, S., and Luan, S. CLE-like (CLEL) peptides control the pattern of root growth and lateral root development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109,5 1760-1765. (2012)
Moresco, J.J., Carvalho, P.C., and Yates, J.R., 3rd. Identifying components of protein complexes in C. elegans using co-immunoprecipitation and mass spectrometry. Journal of Proteomics 73,11 2198-2204. (2010)
Narita, N.N., Moore, S., Horiguchi, G., Kubo, M., Demura, T., Fukuda, H., Goodrich, J., and Tsukaya, H. Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana. The Plant Journal 38,4 699-713. (2004)
Ning, J., Li, X., Hicks, L.M., and Xiong, L. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiology 152,2 876-890. (2010)
Oh, S.K., Baek, K.H., Seong, E.S., Joung, Y.H., Choi, G.J., Park, J.M., Cho, H.S., Kim, E.A., Lee, S., and Choi, D. CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant Physiology 154,1 245-261. (2010)
Oien, D.B., and Moskovitz, J. Substrates of the Methionine Sulfoxide Reductase System and Their Physiological Relevance Current Topics in Developmental Biology 80 93-133. (2007)
Qiu, Q.-S., Guo, Y., Dietrich, M.A., Schumaker, K.S., and Zhu, J.-K. Regulation of SOS1, a plasma membrane Na(+)/H(+) exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America 99,12 8436-8441. (2002)
Rahantaniaina, M.S., Tuzet, A., Mhamdi, A., and Noctor, G. Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? Frontiers in Plant Science 4 477-489. (2013)
Rayon, C., Lerouge, P., and Faye, L. The protein N-glycosylation in plants. Journal of Experimental Botany 49,326 1463-1472. (1998)
Riechmann, J.L., Krizek, B.A., and Meyerowitz, E.M. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences of the United States of America 93,10 4793-4798. (1996)
Romero, H.M., Berlett, B.S., Jensen, P.J., Pell, E.J., and Tien, M. Investigations into the Role of the Plastidial Peptide Methionine Sulfoxide Reductase in Response to Oxidative Stress in Arabidopsis. Plant Physiology 136,3 3784-3794. (2004)
Rouhier, N., Vieira Dos Santos, C., Tarrago, L., and Rey, P. Plant methionine sulfoxide reductase A and B multigenic families. Photosynthesis research 89,2-3 247-262. (2006)
Roy, S., and Nandi, A.K. Arabidopsis thaliana methionine sulfoxide reductase B8 influences stress-induced cell death and effector-triggered immunity. Plant molecular biology 93,1-2 109-120. (2017)
Schallreuter, K.U. Functioning methionine-S-sulfoxide reductases A and B are present in human skin. J Invest Dermatology 126,5 947-949. (2006)
Seitz, O. Glycopeptide synthesis and the effects of glycosylation on protein structure and activity. Chembiochem 1,4 214-246. (2000)
Shou, H., Bordallo, P., and Wang, K. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. Journal of Experimental Botany 55,399 1013-1019. (2004a)
Shou, H., Bordallo, P., Fan, J.-B., Yeakley, J.M., Bibikova, M., Sheen, J., and Wang, K. Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proceedings of the National Academy of Sciences of the United States of America 101,9 3298-3303. (2004b)
Song, J., Win, J., Tian, M., Schornack, S., Kaschani, F., Ilyas, M., van der Hoorn, R.A.L., and Kamoun, S. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America 106,5 1654-1659. (2009)
Sun, X., Sun, M., Jia, B., Qin, Z., Yang, K., Chen, C., Yu, Q., and Zhu, Y. A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca(2+) /CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress. The Plant Journal 86,6 514-529. (2016)
Sunarpi, Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., Horie, R., Chan, W.Y., Leung, H.Y., Hattori, K., Konomi, M., Osumi, M., Yamagami, M., Schroeder, J.I., and Uozumi, N. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. The Plant Journal 44,6 928-938. (2005)
Suzuki, N., Koussevitzky, S., Mittler, R., and Miller, G. ROS and redox signalling in the response of plants to abiotic stress. Plant, cell & environment 35,2 259-270. (2012)
Takahashi, F., Suzuki, T., Osakabe, Y., Betsuyaku, S., Kondo, Y., Dohmae, N., Fukuda, H., Yamaguchi-Shinozaki, K., and Shinozaki, K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556,7700 235-238. (2018)
Tian, M., Win, J., Song, J., van der Hoorn, R., van der Knaap, E., and Kamoun, S. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiology 143,1 364-377. (2007)
Umezawa, T., Yoshida, R., Maruyama, K., Yamaguchi-Shinozaki, K., and Shinozaki, K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 101,49 17306-17311. (2004)
Van Breusegem, F., and Dat, J.F. Reactive oxygen species in plant cell death. Plant Physiology 141,2 384-390. (2006)
Van de Velde, W., Zehirov, G., Szatmari, A., Debreczeny, M., Ishihara, H., Kevei, Z., Farkas, A., Mikulass, K., Nagy, A., Tiricz, H., Satiat-Jeunemaître, B., Alunni, B., Bourge, M., Kucho, K.-i., Abe, M., Kereszt, A., Maroti, G., Uchiumi, T., Kondorosi, E., and Mergaert, P. Plant Peptides Govern Terminal Differentiation of Bacteria in Symbiosis. Science 327,5969 1122-1127. (2010)
Vie, A.K., Najafi, J., Winge, P., Cattan, E., Wrzaczek, M., Kangasjarvi, J., Miller, G., Brembu, T., and Bones, A.M. The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana. Journal of Experimental Botany 68,13 3557-3571. (2017)
Vitale, A., and Denecke, J. The endoplasmic reticulum-gateway of the secretory pathway. Plant Cell 11,4 615-628. (1999)
Wang, Y., Ying, Y., Chen, J., and Wang, X. Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Science 167,4 671-677. (2004)
Weissbach, H., Resnick, L., and Brot, N. Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. BBA Proteins and Proteomics 1703,2 203-212. (2005)
Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., and Provart, N.J. An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLOS ONE 2,8 e718. (2007)
Xing, L., Li, J., Xu, Y., Xu, Z., and Chong, K. Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility. PLoS One 4,3 e4854. (2009)
Yamaguchi, Y., Huffaker, A., Bryan, A.C., Tax, F.E., and Ryan, C.A. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22,2 508-522. (2010)
Zhu, J.-K. Plant salt tolerance. Trends in Plant Science 6,2 66-71. (2001)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw