進階搜尋


下載電子全文  
系統識別號 U0026-2507201810363500
論文名稱(中文) 以水力耦合模式評估降雨型態及水力傳導異向性對邊坡穩定之研究
論文名稱(英文) The effect of rainfall pattern and soil hydraulic conductivity anisotropy on slope stability using a coupled hydromechanical framework
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 蔡易縉
研究生(英文) Yi-Jin Tsai
學號 N46054057
學位類別 碩士
語文別 中文
論文頁數 86頁
口試委員 指導教授-葉信富
口試委員-徐國錦
口試委員-陳金諾
口試委員-柯建仲
口試委員-李哲瑋
中文關鍵字 水力耦合模式  降雨型態  水力傳導異向性  局部安全係數 
英文關鍵字 coupled hydromechanical framework  rainfall pattern  hydraulic conductivity anisotropy  local factor of safety 
學科別分類
中文摘要 透過臺灣的氣候變遷調查報告,可知臺灣的年度總降雨日數逐漸減少,而極端降雨呈現強度增加之趨勢,使得地形陡峻、地質脆弱之山坡地面臨更嚴重的威脅。在過去分析降雨入滲對邊坡安全性影響時,通常以真實的降雨案例或假設不同強度之平均降雨並設定土壤水力傳導係數為均向進行討論,而忽略降雨型態變遷以及水力傳導異向性對邊坡穩定之影響。因此,本研究選擇曾文水庫集水區為研究區域,以水文統計方法分析研究區降雨特性,並使用水力耦合模式探討降雨型態變化及水力傳導異向性對邊坡安全性之影響。
本研究採用 HYDRUS 2D 及The Slope Cube Module 有限元素分析模式進行降雨入滲之水力耦合分析,在穩定性分析方面採用了局部安全係數理論進行探討,相較於傳統的邊坡安全係數分析,更能確切瞭解邊坡不同深度及位置之土壤其安全係數變化情形。首先,研究中透過趨勢分析及頻率分析方法分析曾文水庫集水區之降雨特性,趨勢檢定之結果顯示近 30 年間降雨強度呈現上升之趨勢,且以 1 日最大降雨強度的上升幅度最大,每年平均上升 0.8 mm/hr。而邊坡穩定性分析結果顯示,降雨入滲行為未受土壤滲透能力限制下,未來降雨強度上升導致降雨入滲深度加深,2050 年及 2100 年之降雨案例較 2016 年之案例,入滲深度分別增加了 16.7 % 及 30.0 %,更容易引發邊坡淺層滑動之災害。而藉由頻率分析,則能瞭解重現週期越長的降雨事件之累積降雨量越高,降雨強度提高同樣使入滲深度加深,而使邊坡深處土壤更快受降雨影響而安全係數下降。此外,透過頻率分析方法,研究中建立曾文水庫集水區之降雨強度-延時頻率曲線(IDF),藉此分析降雨強度與延時對邊坡之影響。水力耦合模式之模擬結果表示,短延時(6 小時)降雨強度較高,使壤土邊坡表層土壤(0.5~1.0 m)安全係數快速下降而喪失穩定性;而長延時(24 小時)之降雨雖降雨強度低,但延時較長而容易使更深處的土壤受降雨影響而喪失穩定性,土石流、淺層邊坡滑動等災害皆可能發生。
本研究在水力耦合模式中建立不同土壤特性之邊坡以進行水力傳導異向性分析,透過研究結果,可瞭解當垂向水力傳導係數不變時,水平向水力傳導係數提高(異向性增加)造成降雨滲流越趨於水平且往斜坡內部入滲,導致坡頂靠近斜坡處及斜坡位置之土壤更容易受降雨影響而安全係數下降,對坡趾而言則呈現垂向入滲速率趨緩而安全性得以維持。本研究以局部安全係數理論進行邊坡穩定性分析,可具體掌握邊坡不同深度位置之土壤安全係數變化行為,並分析水力傳導異向性及降雨型態變遷對邊坡之影響,可作為未來邊坡防災之參考。
英文摘要 This study conducts a trend analysis and a rainfall frequency analysis to examine rainfall intensity variations and rainfall amount for various return periods in order to understand the rainfall pattern changes in the Zengwen reservoir catchment area in the future. Then, a coupled hydromechanical framework is used to analyze the effect of rainfall pattern changes on slope stability. The rainfall intensity of the study area showed an increasing trend from 1990–2016. The slope stability analysis results reveal that if the rainfall intensity continues to rise in the future, precipitation will more easily infiltrate the soil, decreasing stability. The results of the frequency analysis show that rainfall intensity, and thus the infiltration rate, increased with increasing return period. Thus, when long return period rainfall events occur on the slope the decrease of slope stability is more significant. Additionally, this research studies the effects of hydraulic conductivity anisotropy on rainfall infiltration and slope safety at various slope locations. The results show that when the vertical hydraulic conductivity (Ky) is constant and the horizontal hydraulic conductivity (Kx) increases (i.e., anisotropy increases), the soil on top of the slope and on the slope itself being easily influenced by rainfall, leading to soil instability. The change of rainfall infiltration at the slope itself is the most significant. However, increased Kr (Kr=Kx/Ky) led to a slower infiltration rate in the vertical direction at the toe of the slope. The results of this study suggest that the effect of the rainfall pattern variations and soil hydraulic conductivity anisotropy should be considered when estimating slope stability in the further studies.
論文目次 摘要 I
Extended Abstract IV
致謝 XI
目錄 XII
表目錄 XIV
圖目錄 XV
符號表 XVIII
特殊名詞 XXI
第一章 緒論 1
第二章 理論模式 7
2.1 未飽和土壤滲流理論 7
2.2 土壤水力參數 10
2.3 未飽和土壤有效應力理論 12
2.4 局部安全係數理論 15
2.5 水力耦合模式 17
2.6 降雨趨勢分析 20
2.6.1 Mann-Kendall Test 20
2.6.2 Theil-Sen Estimator 21
2.7 降雨頻率分析 22
2.7.1 機率分布 23
2.7.2 適合度檢定 26
2.7.3 水文頻率點繪法 27
第三章 集水區降雨特性對邊坡穩定之影響 29
3.1 研究區域概述 29
3.1.1邊坡概念模型建置 30
3.2 降雨趨勢對邊坡穩定性之影響 32
3.2.1 降雨強度趨勢 32
3.2.2 未來邊坡受降雨之影響 35
3.3 累積雨量對邊坡穩定性之影響 38
3.3.1 降雨頻率分析 38
3.3.2 重現週期與邊坡穩定之關聯性 40
3.4 降雨強度及延時對邊坡穩定性之影響 42
3.4.1 降雨強度-延時頻率曲線 42
3.4.2 邊坡穩定性分析結果 44
第四章 水力傳導異向性對邊坡穩定之影響 55
4.1 數值模型 55
4.2 土壤特性 55
4.2.1 土壤材料參數 55
4.2.2 水力傳導係數異向性 57
4.3 結果與討論 58
4.3.1 土壤水力特性評估 58
4.3.2 水力傳導係數異向性評估 63
第五章 結論與建議 75
5.1 結論 75
5.2 建議 77
參考文獻 78
簡歷 85
參考文獻 1. Abramowitz, M., and Stegun, I. A. Handbook of Mathematical Functions. Dover, New York, USA, 1965.
2. Bishop, A. W. The use of slip circle in the stability analysis of slopes. Geotechnique, 5(1), 7–17, 1955.
3. Bishop, A. W. The Principle of Effective Stress. Teknisk Ukeblad, 39, 859-863, 1959.
4. Carsel, R. F., and Parrish, R. S. Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 24, 5, 755-769, 1988.
5. Chen, C. W., Oguchi, T., Hayakawa, Y. S., Saito, H., & Chen, H. Relationship between landslide size and rainfall conditions in Taiwan. Landslides, 14, 3, 1235-1240, 2017.
6. Chen, C.W. Saito, H. and Oguchi, T. Rainfall intensity–duration conditions for mass movements in Taiwan. Progress in Earth and Planetary Science, 2, 1, 14, 2015.
7. Chen, H., Chen, R., and Lin, M. Initiation of the Tungmen debris flow, eastern Taiwan. Environmental and Engineering Geoscience, 5, 4, 459-473, 1999.
8. Chen, H., Lee, C. F., and Law, K. T. Causative Mechanisms of Rainfall-Induced Fill Slope Failures. Journal of Geotechnical and Geoenvironmental Engineering, 130, 6, 593-602, 2004.
9. Cho, S. E. Prediction of shallow landslide by surficial stability analysis considering rainfall infiltration. Engineering Geology, 231, 126-138, 2017.
10. Chow, V. T. Frequency analysis of hydrologic data with special application to rainfall intensities. University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station, Illinois, USA, 1953.
11. Chuang, S. C., Chen, H., Lin, G. W., Lin, C. W., and Chang, C. P. Increase in basin sediment yield from landslides in storms following major seismic disturbance. Engineering Geology, 103, 1-2, 59-65, 2009.
12. Dindang, A., Taat, A., Beng, P. E., Alwi, A. M., Mandai, A., Adam, S. M., Othman, F., Bima, D. A., and Lah, D. Statistical and trend analysis of rainfall data in Kuching, Sarawak from 1968-2010. JMM Research Publication, 6, 17, 2013.
13. Dong, J. J., Tu, C. H., Lee, W. R., and Jheng, Y. J. Effects of hydraulic conductivity/strength anisotropy on the stability of stratified, poorly cemented rock slopes. Computers and Geotechnics, 40, 147-159, 2012.
14. Fellenius, W. Calculation of the stability of earth dams, Transactions. 2nd Congress Large Dams, Washington, DC, 1936. 4. 1936.
15. Heyerdahl, H. Influence of extreme long-term rainfall and unsaturated soil properties on triggering of a landslide - a case study. Nat. Hazards Earth Syst. Sci. Discuss., 2017, 1-43, 2017.
16. Huang, C. C., Ju, Y. J., Hwu, L. K., and Lee, J. L. Internal soil moisture and piezometric responses to rainfall-induced shallow slope failures. Journal of Hydrology, 370(1), 39-51, 2009.
17. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
18. Iryo, T., and Rowe, R. K. Infiltration into an embankment reinforced by nonwoven geotextiles. Canadian Geotechnical Journal, 42, 4, 1145-1159, 2005.
19. Janbu, N. Applications of composite slip surfaces for stability analysis. In Proceedings of the European Conference on the Stability of Earth Slopes. Stockholm, 3, 39-43, 1954.
20. Jemec, M., and Komac, M. Rainfall patterns for shallow landsliding in perialpine Slovenia. Natural Hazards, 67, 3, 1011-1023, 2013.
21. Kendall, M.G. Rank Correlation Methods. 4th Edition, Charles Griffin, London, UK, 1975.
22. Kim, J., Lee, K., Jeong, S., and Kim, G. GIS-based prediction method of landslide susceptibility using a rainfall infiltration-groundwater flow model. Engineering Geology, 182, 63-78, 2014.
23. Kim, W. S., and Borden, R. H. Numerical Simulation of MSE Wall Behavior Induced by Surface-Water Infiltration. Journal of Geotechnical and Geoenvironmental Engineering, 139, 12, 2110-2124, 2013.
24. Kristo, C., Rahardjo, H., and Satyanaga, A. Effect of variations in rainfall intensity on slope stability in Singapore. International Soil and Water Conservation Research, 5, 4, 258-264, 2017.
25. Lee, M. L., Ng, K. Y., Huang, Y. F., and Li, W. C. Rainfall-induced landslides in Hulu Kelang area, Malaysia. Natural Hazards, 70(1), 353-375, 2014.
26. Li, W. C., Lee, L. M., Cai, H., Li, H. J., Dai, F. C., and Wang, M. L. Combined roles of saturated permeability and rainfall characteristics on surficial failure of homogeneous soil slope. Engineering Geology, 153, 105-113, 2013.
27. Longobardi, A., and Villani, P. Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. International Journal of Climatology, 30, 10, 1538-1546, 2010.
28. Lora, M., Camporese, M., Troch, P. A., and Saladin, S. Rainfall-triggered shallow landslides: infiltration dynamics in a physical hillslope model. Hydrological Processes, 30, 18, 3239-3251, 2016.
29. Lu, N., and Godt, J. W. Hillslope hydrology and stability, Cambridge University Press, New York, USA, 2013.
30. Lu, N., and W. J. Likos. Unsaturated Soil Mechanics, John Wiley, New Jersey, 2004.
31. Lu, N., Godt, J. W., and Wu, D. T. A closed‐form equation for effective stress in unsaturated soil. Water Resources Research, 46, 5, 14, 2010.
32. Lu, N., Şener‐Kaya, B., Wayllace, A., and Godt, J. W. Analysis of rainfall‐induced slope instability using a field of local factor of safety. Water Resources Research, 48, 9, 14, 2012.
33. Lu, N., Wayllace, A., and Formetta, G. The Slope Cube Module. Soil Water Retention, LLC: Madison, Wisconsin, USA, 2016.
34. Mahmood, K., Kim, J. M., Ashraf, M., and Ziaurrehman The effect of soil type on matric suction and stability of unsaturated slope under uniform rainfall. KSCE Journal of Civil Engineering, 20, 4, 1294-1299, 2016.
35. Mahmood, K., Ryu, J. H., and Kim, J. M. Effect of anisotropic conductivity on suction and reliability index of unsaturated slope exposed to uniform antecedent rainfall. Landslides, 10, 1, 15-22, 2013.
36. Mann, H. B. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259, 1945.
37. Matsushi, Y., Hattanji, T., and Matsukura, Y. Mechanisms of shallow landslides on soil-mantled hillslopes with permeable and impermeable bedrocks in the Boso Peninsula, Japan. Geomorphology, 76, 1-2, 92-108, 2006.
38. Matsuura, S., Asano, S., and Okamoto, T. Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Engineering Geology, 101, 1, 49-59, 2008.
39. Minnesota Department of Transportation. MnDOT Pavement Design Manual. Minnesota Department of Transportation: St. Paul, Minnesota, USA, 2007.
40. Morgenstern, N., and Price, V. E. The analysis of the stability of general slip surfaces. Geotechnique, 15, 1, 79-93, 1965.
41. Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12, 3, 513-522, 1976.
42. Muntohar, A. S., and Liao, H. J. Analysis of rainfall-induced infinite slope failure during typhoon using a hydrological–geotechnical model. Environmental Geology, 56, 6, 1145-1159, 2009.
43. NASA. New NASA model finds landslide threats in near real-time during heavy rains. Retrieved March 22, 2018, from https://svs.gsfc.nasa.gov/12897, 2018.
44. Ng, C. W. W., and Shi, Q. A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Computers and Geotechnics, 22, 1, 1-28, 1998.
45. Qi, S., and Vanapalli, S. K. Hydro-mechanical coupling effect on surficial layer stability of unsaturated expansive soil slopes. Computers and Geotechnics, 70, 68-82, 2015.
46. Rahardjo, H., Ong, T., Rezaur, R., and Leong, E. C. Factors controlling instability of homogeneous soil slopes under rainfall. Journal of Geotechnical and Geoenvironmental Engineering, 133, 12, 1532-1543, 2007.
47. Rahardjo, H., Satyanaga, A., and Leong, E. C. Effects of rainfall characteristics on the stability of tropical residual soil slope. In Proceedings of the E3S Web of Conferences, Paris, France, 12-14 September 2016, EDP Sciences: Paris, France, 15004, 2016.
48. Rahardjo, H., Satyanaga, A., and Leong, E. C. Effects of flux boundary conditions on pore-water pressure distribution in slope. Engineering Geology, 165, 133-142, 2013.
49. Rahimi, A., Rahardjo, H., and Leong, E. C. Effect of Antecedent Rainfall Patterns on Rainfall-Induced Slope Failure. Journal of Geotechnical and Geoenvironmental Engineering, 137, 5, 483-491, 2011.
50. Reddy, J. N. An introduction to the finite element method. McGraw-Hill New York, USA, 1993.
51. Richards, L. A. Capillary conduction of liquids through porous mediums. Physics, 1, 5, 318-333, 1931.
52. Sen, P. K. Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical Association, 63, 324, 1379-1389, 1968.
53. Shou, K. J., and Yang, C. M. Predictive analysis of landslide susceptibility under climate change conditions-A study on the Chingshui River Watershed of Taiwan. Engineering Geology, 192, 46-62, 2015.
54. Shou, K., Hong, C., Wu, C., Hsu, H., Fei, L., Lee, J., and Wei, C. Spatial and temporal analysis of landslides in Central Taiwan after 1999 Chi-Chi earthquake. Engineering geology, 123, 1-2, 122-128, 2011.
55. Shuin, Y., Hotta, N., Suzuki, M., and Ogawa, K. I. Estimating the effects of heavy rainfall conditions on shallow landslides using a distributed landslide conceptual model. Physics and Chemistry of the Earth, Parts A/B/C, 49, 44-51, 2012.
56. Šimůnek, J., van Genuchten, M. T., and Šejna, M. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal, 7, 2, 587-600, 2008.
57. Take, W. A., Bolton, M. D., Wong, P. C. P., and Yeung, F. J. Evaluation of landslide triggering mechanisms in model fill slopes. Landslides, 1, 3, 173-184, 2004.
58. Terzaghi, K. Erdbaumechanik. Franz Deuticke, Vienna, 1925.
59. Terzaghi, K. Theoretical soil mechanics, Wiley, New York, USA, 1943.
60. Todd, D. Groundwater Hydrology. Jon Wiley & Sons Inc.: New York, NY, USA, 103, 1980.
61. Tung, Y. S., Chen, C. T., Min, S. K., and Lin, L. Y. Evaluating Extreme Rainfall Changes over Taiwan Using a Standardized Index. Terrestrial, Atmospheric & Oceanic Sciences, 27, 5, 705-715, 2016.
62. van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America Journal, 44,5, 892-898, 1980.
63. Yang, K. H., Uzuoka, R., Thuo, J. N., Lin, G. L., and Nakai, Y. Coupled hydro-mechanical analysis of two unstable unsaturated slopes subject to rainfall infiltration. Engineering Geology, 216, 13-30, 2017.
64. Yeh, C.F., Wang, J., Yeh, H.F., and Lee, C.H. Spatial and temporal streamflow trends in northern Taiwan. Water, 7, 2, 634-651, 2015.
65. Yeh, H. F., Wang, J., Shen, K. L., and Lee, C. H. Rainfall characteristics for anisotropic conductivity of unsaturated soil slopes. Environmental Earth Sciences, 73, 12, 8669-8681, 2015.
66. Zhang, G. R., Qian, Y. J., Wang, Z. C., and Zhao, B. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope. The Scientific World Journal, 2014, 7, 2014.
67. Zhang, J., Li, J., and Lin, H. Models and influencing factors of the delay phenomenon for rainfall on slope stability. European Journal of Environmental and Civil Engineering, 22, 1, 122-136, 2018.
68. Zhang, L., Zhang, J., Zhang, L., and Tang, W. Stability analysis of rainfall-induced slope failure: a review. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 164, 5, 299, 2011.
69. 龔楚媖、顏葆琳、李宗融、吳宜昭、于宜強,「《台灣極端降雨事件:1992-2013年重要事件彙整》專書導讀」,國家災害防救科技中心災害防救電子報,國家災害防救科技中心,第120期,2015。
70. 陳俊愷、林伯勳、冀樹勇、簡以達、蔡明發,「莫拉克颱風災後引致水庫集水區上遊重點崩塌地之土砂安定性評估」,中興工程,第128期,25-37,2015。
71. 周 佳、陳維婷、羅敏輝、李明安、許晃雄、洪志誠、鄒治華、盧孟明、洪致文、陳正達、鄭兆尊,「臺灣氣候變遷科學報告 2017 - 物理現象與機制」,國家災害防救科技中心,新北市,臺灣,443-508,2017。
72. 鍾侑達、郭峻菖、陳昶憲,「台灣區域降雨趨勢分析」,農業工程學報,第55卷,第4期,1-18,2009。
73. 施虹如、吳亭燁、蘇元風、劉哲欣、李欣輯、陳永明、張志新,「極端降雨事件下淺層崩塌潛勢衝擊評估分析」,工程環境會刊,第34期,77-95,2015。
74. 王如意與易任,「應用水文學(新編下冊)」,茂昌圖書有限公司,臺北市,臺灣,2006。
75. 冀樹勇、張玉粦、何幸娟、蕭震洋、陳俊愷、許振崑、梁惠儀、柯傑夫,「曾文水庫集水區多元尺度環境調查與保育治理成效評估」,行政院農業委員會水土保持局委託(SWCB-100-154),臺北市,臺灣,2011。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw