進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2507201810183900
論文名稱(中文) 利用氦氖雷射全息曝光製程實現快速響應且低散射液晶相位調制器之研究
論文名稱(英文) Study of Liquid Crystal Phase Modulators with Fast Optical Response and Low Light Scattering Realized via Holographic Exposure Process with a He-Ne Laser
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 106
學期 2
出版年 107
研究生(中文) 簡均祐
研究生(英文) Chun-Yu Chien
學號 L78031033
學位類別 博士
語文別 英文
論文頁數 126頁
口試委員 指導教授-許家榮
口試委員-李佳榮
口試委員-呂佳諭
口試委員-李偉
口試委員-黃啟炎
中文關鍵字 全息曝光  液晶相位調製器  快速響應元件  偏振無關元件 
英文關鍵字 Holographic exposure  liquid crystal phase modulator  fast response device  polarization-independence device. 
學科別分類
中文摘要 液晶材料迄今已被廣泛的應用在不同的光電元件中,包括空間相位調制器、液晶透鏡、顯示器、光束偏折等裝置。其中,水平配向液晶盒經常應用於相位調製器的研究上,其可以提供的最大相位延遲(δ)可由公式δ = 2πΔnd/λ來表示,其中Δn為液晶的雙折射性、d為液晶盒厚度、λ為入射光波長。水平配向液晶相位調製器通常可以操作在任何波段,例如可見光或紅外光。一般來說,反應時間為一項評估液晶元件效能的重要物性參數包括上升時間與下降時間兩部份,由於下降時間通常受限於液晶的黏滯係數、液晶盒厚度、液晶彈性係數等,因此是影響響應時間快慢的主因。
  聚合物網絡液晶非常容易達到快速的下降反應時間,其製程利用具備液晶結構的各向異性光聚合物添加於液晶盒中並施以紫外光曝光,製程結束後液晶盒內的聚合物網絡將產生額外的力量去加速液晶分子鬆弛返回原來狀態所需的時間。但該方式因為聚合物網絡與液晶分子之間折射率不匹配,常會有光散射發生。除此之外,水平配向液晶相位調製器為偏振相關元件。在光學系統中,經常需要偏振無關之液晶光電元件以更方便於操作或使用上。
  在本論文中,主要由三項研究成果所構成,包括了不同特性的液晶相位調製器研製,並陳述聚合物網絡液晶的散射問題改善成效,以及達到亞毫秒反應時間與偏振無關等優異的光學性能。在液晶盒內的光散射問題可以藉由形成較小液晶區域尺寸的方式達到抑制目的,若要在可見光波段無散射,則液晶區域的尺寸通常要小於200 nm。由於全息曝光可以用來產生非常小的干涉條紋,在本論文中利用低功率氦氖雷射產生干涉條紋達到縮小液晶區域尺寸的目的,實驗中選擇一款紅光起始劑與一共起始劑並添加RM257單體使其混合物於液晶盒中在紅光全息曝光下產生光聚合反應。此外,利用此方法所製作的液晶相位調製器因具有全息產生之聚合物網絡結構,其光電性能具備超快速反應時間與低散射等特點。在室溫下操作2π相位調製時可以達到上升時間21 μs與下降時間49 μs的快速響應,並且藉由提高環境溫度可達更快的反應時間表現。
  另外,此元件使用於紅外光波長1550 nm的特性表現上,其液晶混合物使用最佳化的材料比例以達到更低電壓操作的目的。研究中針對混合物中NVP單體與RM257的比例對液晶盒的影響進行實驗分析,結果顯示NVP單體的添加除了維持良好的水平配向液晶盒特性外,其操作電壓亦從95 Vrms下降至75 Vrms,且聚合物結構的形變問題亦獲得改善,光學響應時間約是上升時間為0.88 ms;下降時間為0.4 ms。
  第三項研究成果是利用全息曝光進行製程於添加手性分子與RM257材料的液晶盒,並在液晶盒曝光過程控制其溫度於液晶混合物處於各向同性狀態,因此,液晶盒內藉由全息曝光縮小的液晶區域其中的液晶分子形成無序排列而呈現光學等向性的特性表現,該液晶盒稱之為聚合物穩定光學等向性液晶。研究中利用此液晶盒實現具備低散射、偏振無關、快速響應等特性的相位調製器。此外,更添加一款氟系界面活性劑於液晶盒中,明顯地降低液晶相位調製器的操作電壓從180 Vrms下降至100 Vrms,並同時維持良好的光學性能,其上升時間為0.11 ms;下降時間為1.32 ms。
英文摘要 Liquid crystal (LC) materials have been widely applied in various electro-optical devices include spatial light modulators, LC lenses, displays, and beam steering. Among them, a homogeneous alignment LC (HALC) cell is usually adopted in phase modulator to provide maximum phase retardation (δ) using the equation δ = 2πΔnd/λ, where Δn is LC birefringence, d is cell gap, and λ is incident wavelength. HALC phase modulator can be used at any wavelength of interest, for instance, visible light or infrared light. In general, response time include rising time and falling time are importantly physical parameters for performance of LC devices. However, the falling time is usually limited by the LC rotational viscosity, cell gap, and LC elastic constant, which mainly degraded the response time.
Polymer network LC (PNLC) is easily to demonstrate a fast falling time, wherein the molecules of an anisotropic monomer possessing an LC building block structure are doped with LCs and processed with UV exposure. Thereafter the generated polymer networks provide constraints to LCs to effectively speed up the falling time during the relaxation of LC molecular reorientations. However, light scattering occurs due to the refractive index mismatch of polymer networks and LC micro-domains. In addition, HALC phase modulators are polarization-dependent, it is well known that polarization-independent LC devices in most optical systems usually demonstrate various advantages, including operation convenience.
In this dissertation, which consists of three achievements which covers LC phase modulators with a goal to address the issue on light scattering in PNLC cells while achieving superior performance include sub-millisecond response time and/or polarization-independent. The degree of light scattering can be reduced by using much smaller LC micro-domains, the dimensions should be reduced to lower than 200 nm for scattering-free in visible regime.
Given that holographic exposure can spatially generate very fine and directionally periodic interference patterns with a pitch of a few hundred nanometers. We use the interference pattern produced by a low-power He-Ne laser to process the sample for reduction of LC domain dimension. A novel photoinitiator and co-initiator successfully excite the photopolymerization of anisotropic monomer (RM257) under the red light irradiation. As a result, the holographic polymer network formed in LC phase modulators via a He-Ne laser in the first work demonstrates ultra-fast optically response and low light scattering. These advantages are mainly caused by the small LC domains and uniform polymer network when processing LC cells via holographic exposure to a He-Ne laser. The use of this method to fabricate LC cells as phase modulators results in a rising time of 21 μs and falling time of 49 μs under 2π phase modulation at room temperature. The predicted fast optical response can be achieved when operating devices at high temperatures.
In addition, the proposed PNLC cells are used at infrared light wavelength (1550 nm). The percentages of ingredients in the LC mixture filled in PNLC cells underwent an optimization for reduction of applied voltage. Moreover, the effect of relative ratio between of co-polymer (NVP) and RM257 was investigated. As a result, the fabricated phase modulators with co-polymer dopant also maintained well homogeneous LC alignments and optical-scattering-free characteristics. Furthermore, NVP dopant successfully reduced the operating voltages from 95 Vrms to 79 Vrms to prevent polymer network deformation when electrically operating with higher voltages. The fabricated infrared phase modulators had a sub-millisecond response time, that is, rising time of 0.88 ms and falling time of 0.40 ms.
In the third work, the holographic exposure processes was used to treat chiral/RM257 dopant liquid crystal cells, and the cell was controlled in the isotropic phase during the exposure. As a result, small LC domains with random director distributions were obtained to show novel optical isotropy, that is, polymer-stabilized isotropic liquid crystal cells. The PSILC cell applied in phase modulators showed unique performances, including low light scattering, polarization-independence, and fast optical response. Furthermore, an extra fluoro-surfactant dopant in cells showed that the phase modulators retained their performance but with considerable reduction of operating voltages, from 180 Vrms to 100 Vrms. The rising time and falling time are respectively 0.11 ms and 1.32 ms when switching electrically between 0 and 100 Vrms.
論文目次 摘要 I
ABSTRACT III
ACKNOWLEDGEMENT VI
CONTENTS VII
LIST OF FIGURES IX
LIST OF TABLES XIV
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 PHYSICAL PROPERTIES OF LIQUID CRYSTALS 6
2-1 Introduction of Liquid Crystals 6
2-2 Physical Properties of Nematic Liquid Crystals 10
2-2-1 Orientational Order 10
2-2-2 Dielectric Anisotropy and Optical Birefringence 12
2-2-2-1 The Relation Between Wavelength and Refractive Indices 16
2-2-2-2 The Relation Between Temperature and Refractive Indices 20
2-2-3 Elastic Properties and Rotational Viscosity 22
2-2-4 Freedericksz Transition 26
CHAPTER 3 OPTICS OF LIQUID CRYSTALS AND HOLOGRAPHY 32
3-1 Electro-Optical Property of Liquid Crystal 32
3-1-1 Dielectric Tensor and Index Ellipsoid 33
3-1-2 Phase Modulation of HALC Cell 39
3-2 Optical Response of HALC Cell 41
3-2-1 Phase Falling Time 42
3-2-2 Phase Rising time 46
3-3 Introduction of Holographic Principle 48
3-4 Holographic LC Gratings 50
3-5 Holographic Recording Using a Visible Laser 53
CHAPTER 4 EFFECTS OF HOLOGRAPHIC POLYMER NETWORKS IN LIQUID CRYSTAL CELLS 56
4-1 Introduction 56
4-2 Ultra-fast LC Phase Modulator in the Visible Region 58
4-2-1 Experimental Details 58
4-2-2 Experimental Results 63
4-2-2-1 Scattering Loss and Phase Modulation 63
4-2-2-2 Electrostriction Effect 70
4-2-2-3 Temperature Effect 74
4-2-3 Summary 76
4-3 Fast Response of LC IR Phase Modulators 77
4-3-1 Experimental Details 77
4-3-2 Experimental Results 78
4-3-2-1 Scattering Loss 78
4-3-2-2 Reflective Phase Modulation 80
4-3-2-3 Phase Deviation Induced by Electrostriction Effect 83
4-3-3 Summary 86
CHAPTER 5 POLARIZATION INDEPENDENT PHASE MODULATOR REALIZED BY PHOTO-POLYMERIZATION IN CHIRAL DOPANT LC CELLS 87
5-1 Introduction 87
5-2 Experimental Details 90
5-2-1 Materials 90
5-2-2 Holographic Exposure System 91
5-2-3 Measurement 93
5-3 Experimental Results 94
5-4 Discussion 101
5-5 Summary 103
CHAPTER 6 CONCLUSION AND FUTURE WORKS 104
LIST OF REFERENCES 107
LIST OF PUBLICATIONS 125

參考文獻 1 C.-Y. Chien, L.-Y. Wu, C.-R. Sheu, C.-J. Hsu, C.-Y. Huang, C.-H. Chen, L.-Y. Huang, S.-L. Lee, and W.-C. Tsai, “Fast response time in liquid crystal cells doped with low concentrations of reactive mesogen via photopolymerization at low temperature,” Opt. Mater. Express 7(8), 2740–2751 (2017).
2 H. Chen, F. Peng, Z. Luo, D. Xu, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
3 M. Kim, H. G. Ham, H.-S. Choi, P. J. Bos, D.-K. Yang, J. H. Lee, and S. H. Lee, “Flexoelectric in-plane switching (IPS) mode with ultra-high-transmittance, low-voltage, low-frequency, and a flicker-free image,” Opt. Express 25(6), 5962–5971 (2017).
4 T.-H. Choi, S.-W. Oh, Y.-J. Park, Y. Choi, and T.-H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls,” Sci. Rep. 6, 27936 (2016).
5 M. S. Kim, P. J. Bos, D.-W. Kim, D.-K. Yang, J. H. Lee, and S. H. Lee, “Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices,” Sci. Rep. 6, 35254 (2016).
6 G. Zito and S. Pissadakis, “Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber,” Opt. Lett. 38(17), 3253–3256 (2013).
7 A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
8 M. C. Varney, Q. Zhang, B. Senyuk, and I. I. Smalyukh, “Self-assembly of colloidal particles in deformation landscapes of electrically driven layer undulations in cholesteric liquid crystals,” Phys. Rev. E 94(4), 042709 (2016).
9 R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
10 L. Liu, L. Xuan, G. Zhang, M. Liu, L. Hu, Y. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C 3(21), 5566–5572 (2015).
11 P. Palffy-Muhoray and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26(11), 804–806 (2001).
12 J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21(13), 15765–15776 (2013).
13 P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proceedings of the IEEE 97(6), 1078–1096 (2009).
14 L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104(3), 033109 (2008).
15 G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” Optical Imaging and Metrology: Advanced Technologies, 1–29 (2012).
16 L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision,” Opt. Express 12(26), 6403–6409 (2004).
17 G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36(7), 1517–1524 (1997).
18 P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12(17), 4059–4071 (2004).
19 Y.-H. Lin, M.-S. Chen, and H.-C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
20 G. Shibuya, H. Yoshida, and M. Ozaki, “High-speed driving of liquid crystal lens with weakly conductive thin films and voltage booster,” Appl. Opt. 54(27), 8145–8151 (2015).
21 C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
22 M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
23 H. Sunkwang, S. B. Hyuk, K. Tae‐Sung, B. Brian, and K. S. S., “P‐51: Advanced Method for Motion‐Blur Reduction in LCDs,” SID Digest 36(1), 466–469 (2005).
24 G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal SLMs using overdrive with phase change reduction,” Opt. Express 21(2), 1779–1797 (2013).
25 S.-T. Wu and D.-K. Yang, Reflective liquid crystal displays. (Wiley, 2001).
26 H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64 (2002).
27 Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
28 K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Disp. Tech. 6(2), 49–51 (2010).
29 J. Tan, Y. Song, J.-L. Zhu, S.-B. Ni, Y.-J. Wang, X.-Y. Sun, J.-G. Lu, B.-R. Yang, and H.-P. D. Shieh, “Blue phase LC/polymer Fresnel lens fabricated by holographics,” J. Disp. Tech. 10(2), 157–161 (2014).
30 E. Oton, E. Netter, T. Nakano, and F. Inoue, “Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation,” Sci. Rep. 7, 44575 (2017).
31 J. Yan, Y. Xing, Z. Guo, and Q. Li, “Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system,” Opt. Express 23(12), 15256–15264 (2015).
32 R. Hikmet, “From liquid crystalline molecules to anisotropic gels,” Mol. Cryst. Liq. Cryst. 198(1), 357–370 (1991).
33 I. Dierking, “Recent developments in polymer stabilised liquid crystals,” Poly. Chem. 1(8), 1153–1159 (2010).
34 F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265–273 (2015).
35 J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Poly. Sci. B: Poly. Phys 52(3), 183–192 (2014).
36 Y.-H. Fan, Y.-H. Lin, H. Ren, S. Gauza, and S.-T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
37 G. D. Love, A. K. Kirby, and R. A. Ramsey, “Sub-millisecond, high stroke phase modulation using polymer network liquid crystals,” Opt. Express 18(7), 7384–7389 (2010).
38 C. Rajaram, S. Hudson, and L. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater 8(10), 2451–2460 (1996).
39 F. Du, S. Gauza, and S.-T. Wu, “Influence of curing temperature and high birefringence on the properties of polymer-stabilized liquid crystals,” Opt. Express 11(22), 2891–2896 (2003).
40 F. Du and S.-T. Wu, “Curing temperature effects on liquid crystal gels,” Appl. Phys. Lett. 83(7), 1310–1312 (2003).
41 Z. Xiangjie, L. Cangli, D. Jiazhu, Z. Jiancheng, Z. Dayong, and L. Yongquan, “Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator,” Opt. Express 22(12), 14757–14768 (2014).
42 T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci 30(1), 83–1115 (2000).
43 S.-T. Wu and A. Y.-G. Fuh, “Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings,” Jpn. J. Appl. Phys. 44(2R), 977 (2005).
44 Y. Liu and X. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. Opt. 2008 (2008).
45 R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
46 L. De Sio, N. Tabiryan, and T. J. Bunning, “POLICRYPS-based electrically switchable Bragg reflector,” Opt. Express 23(25), 32696–32702 (2015).
47 J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
48 D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
49 H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
50 H. Ren, Y.-H. Lin, and S.-T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
51 Y.-H. Lin, H. Ren, Y.-H. Wu, Y. Zhao, J. Fang, Z. Ge, and S.-T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
52 Z. He, Y.-H. Lee, F. Gou, D. Franklin, D. Chanda, and S.-T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
53 Y.-H. Lin, M.-S. Chen, W.-C. Lin, and Y.-S. Tsou, “A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90 twisted cell,” J. Appl. Phys. 112(2), 024505 (2012).
54 Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
55 Y.-H. Lin, H. Ren, Y.-H. Fan, Y.-H. Wu, and S.-T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98(4), 043112 (2005).
56 J. Kobashi, H. Kim, H. Yoshida, and M. Ozaki, “Polarization-independent submillisecond phase modulation utilizing polymer/short-pitch cholesteric liquid crystal composite,” Opt. Lett. 40(22), 5363–5366 (2015).
57 H. Ren, Y.-H. Lin, C.-H. Wen, and S.-T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
58 Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro‐optic Kerr effect in nanostructured chiral liquid‐crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
59 F. Reinitzer, “Beiträge zur kenntniss des cholesterins,” Monatschr. Chem. 9(1), 421–441 (1888).
60 O. Lehmann, “On flowing crystals,” Z. Phys. Chem. 4, 462 (1889).
61 P. J. Wojtowicz, P. Sheng, and E. Priestley, Introduction to liquid crystals. (Springer, 1975).
62 I.-C. Khoo, Liquid crystals: physical properties and nonlinear optical phenomena. (John Wiley & Sons, 2007).
63 G. W. Gray, K. J. Harrison, and J. Nash, “New family of nematic liquid crystals for displays,” Elec. Lett 9 (6), 130 (1973).
64 S. Chandrasekhar and G. Ranganath, “Discotic liquid crystals,” Reports on Progress in Physics 53(1), 57 (1990).
65 Y. Huang, Y. Zhou, and S.-T. Wu, “Broadband circular polarizer using stacked chiral polymer films,” Opt. Express 15(10), 6414–6419 (2007).
66 R. Zentel, “Liquid crystalline elastomers,” Adv. Mater. 1(10), 321 (1989).
67 T. Ishikawa and X.-D. Mi, ( U.S. Patent No. 6,831,722. , 2004).
68 B. Fan, S. Vartak, J. Eakin, and S. Faris, “Broadband polarizing films by photopolymerization-induced phase separation and in situ swelling,” Appl. Phys. Lett. 92(6), 061101 (2008).
69 J. Prost, The physics of liquid crystals. (Oxford university press, 1995).
70 J. Kerr, “XL. A new relation between electricity and light: Dielectrified media birefringent,” Philos. Mag. 50(332), 337–348 (1875).
71 A. Saupe, “On molecular structure and physical properties of thermotropic liquid crystals,” Mol. Cryst. Liq. Cryst. 7(1), 59–74 (1969).
72 P. Cladis, T. Garel, and P. Pieranski, “Kossel diagrams show electric-field-induced cubic-tetragonal structural transition in frustrated liquid-crystal blue phases,” Phys. Rev. Lett. 57(22), 2841 (1986).
73 S. Brazovskii and S. Dmitriev, “Phase transitions in cholesteric liquid crystals,” Zh. Eksp. Teor. Fiz 69, 979–989 (1975).
74 E. Dubois-Violette and B. Pansu, “Frustration and related topology of blue phases,” Mol. Cryst. Liq. Cryst. 165(1), 151–182 (1988).
75 C. Bahr and H.-S. Kitzerow, Chirality in liquid crystals. (Springer, 2001).
76 D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices. Section 1.3. (John Wiley & Sons, 2006).
77 W. H. De Jeu and W. H. Jeu, Physical properties of liquid crystalline materials. (CRC Press, 1980).
78 J. D. Jackson, Classical electrodynamics. (Wiley, 1999).
79 W. De Jeu and P. Bordewijk, “Physical studies of nematic azoxybenzenes. II. Refractive indices and the internal field,” J. Chem. Phys 68(1), 109–115 (1978).
80 D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices. Section 1.5. (John Wiley & Sons, 2006).
81 M. F. Vuks, “Determination of the optical anisotropy of aromatic molecules from the double refraction of crystals,” Opt. Spek. 20, 644 (1966).
82 J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
83 J. Li and S.-T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys. 96(11), 6253–6258 (2004).
84 S. T. Wu, “A semiempirical model for liquid‐crystal refractive index dispersions,” J. Appl. Phys. 69(4), 2080–2087 (1991).
85 J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
86 J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
87 I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
88 K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, Alignment technology and applications of liquid crystal devices. (CRC Press, 2005).
89 F. C. Frank, “I. Liquid crystals. On the theory of liquid crystals,” Disc. Fara. Soci. 25, 19–28 (1958).
90 I.-C. Khoo, Liquid crystals: physical properties and nonlinear optical phenomena. Section 3.2. (John Wiley & Sons, 2007).
91 W. Maier and A. Saupe, “Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil II,” Zeitschrift für Naturforschung A 15(4), 287–292 (1960).
92 S.-T. Wu and C.-S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219 (1990).
93 H. Kneppe, F. Schneider, and N. Sharma, “Rotational viscosity γ1 of nematic liquid crystals,” J. Chem. Phys 77(6), 3203–3208 (1982).
94 A. Diogo and A. Martins, “Thermal behaviour of the twist viscosity in a series of homologous nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 66(1), 133–146 (1981).
95 H. Imura and K. Okano, “Temperature dependence of the viscosity coefficients of liquid crystals,” Jpn. J. Appl. Phys. 11(10), 1440 (1972).
96 S.-T. Wu and C.-S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
97 M. Schadt, “Field-effect liquid-crystal displays and liquid-crystal materials: key technologies of the 1990s,” Disp. 13(1), 11–34 (1992).
98 W. Maier and G. Meier, “A simple theory of the dielectric characteristics of homogeneous oriented crystalline-liquid phases of the nematic type,” Z. Naturforsch. A 16, 262–267 (1961).
99 D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices. . (John Wiley & Sons, 2006).
100 Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Tech. 9(2), 74–77 (2013).
101 D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices. Section 5.2. (John Wiley & Sons, 2006).
102 T. Scharf, Polarized light in liquid crystals and polymers. (John Wiley & Sons, 2007).
103 S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53(19), 1794–1796 (1988).
104 X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
105 M. Oh‐e and K. Kondo, “Response mechanism of nematic liquid crystals using the in‐plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
106 P. Pieranski, F. Brochard, and E. Guyon, “Static and dynamic behavior of a nematic liquid crystal in a magnetic field. Part II: Dynamics,” J. Phys 34(1), 35–48 (1973).
107 J. L. Ericksen, “Conservation laws for liquid crystals,” Trans. Soc. Rheol. 5(1), 23–34 (1961).
108 F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mechan. Anal. 28(4), 265–283 (1968).
109 S. T. Wu and U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48(10), 624–626 (1986).
110 S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Tech. 3(3), 250–252 (2007).
111 Z. Ge, S.-T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
112 H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
113 S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
114 M. Jiao, Z. Ge, S.-T. Wu, and W.-K. Choi, “Submillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell,” Appl. Phys. Lett. 92(11), 111101 (2008).
115 C. Xiang, X. Sun, and X. Yin, “The electro-optic properties of a vertically aligned fast response liquid crystal display with three-electrode driving,” J. Phys. D: Appl. Phys 37(7), 994 (2004).
116 G.-J. Lin, T.-J. Chen, B.-Y. Chen, J.-J. Wu, and Y.-J. Yang, “Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks,” Opt. Mater. Express 4(8), 1657–1667 (2014).
117 C.-Y. Huang, W.-Y. Jhuang, C.-T. Hsieh, and C.-H. Lin, “Switching of polymer-stabilized vertical alignment liquid crystal Pi cell-curing voltage and driving scheme effects,” Jpn. J. Appl. Phys. 48(2R), 020210 (2009).
118 C.-Y. Huang, W.-Y. Jhuang, and C.-T. Hsieh, “Switching of polymer-stabilized vertical alignment liquid crystal cell,” Opt. Express 16(6), 3859–3864 (2008).
119 E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52(10), 1123–1130 (1962).
120 E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53(12), 1377–1381 (1963).
121 F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics. Ch.7. (Addison Wesley, 2007).
122 J. C. Robert, B. B. Christoph, and H. L. Lawrence, Optical hologtaphy. (Academic Press, 1971).
123 S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Tran. Graph. 35(4), 60 (2016).
124 J. W. Goodman, Introduction to Fourier optics. Section 9.12. (Roberts and Company Publishers, 2005).
125 R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, and D. Donisi, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11(2), 024017 (2009).
126 S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132-134 (1997).
127 G. Odian, Principles of polymerization. Section 3.4. (John Wiley & Sons, 2004).
128 G. Odian, Principles of polymerization. Section 3.3. (John Wiley & Sons, 2004).
129 R. Sutherland, L. Natarajan, V. Tondiglia, and T. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater 5(10), 1533–1538 (1993).
130 M. Infusino, A. Ferraro, A. De Luca, R. Caputo, and C. Umeton, “POLYCRYPS visible curing for spatial light modulator based holography,” J. Opt. Soc. Am. B 29(11), 3170–3176 (2012).
131 A. Y.-G. Fuh, W.-K. Chen, K.-T. Cheng, Y.-C. Liu, C.-K. Liu, and Y.-D. Chen, “Formation of holographic gratings in polymer-dispersed liquid crystals using off-resonant light,” Opt. Mater. Express 5(4), 774–780 (2015).
132 R. A. Ramsey and S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He–Ne laser,” Opt. Lett. 30(6), 592-594 (2005).
133 R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
134 Q. Guo, X. Zhao, H. Zhao, and V. Chigrinov, “Reverse bistable effect in ferroelectric liquid crystal devices with ultra-fast switching at low driving voltage,” Opt. Lett. 40(10), 2413–2416 (2015).
135 G. Lin, T. Chen, Y. Tsai, Y. Lin, J. Wu, and Y. Yang, “Performance enhancement using a non-uniform vertical electric field and polymer networks for in-plane switching of multi-pretilt, vertically aligned liquid crystal devices,” Opt. Lett. 39(21), 6225–6228 (2014).
136 Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Surface-controlled patterned vertical alignment mode with reactive mesogen,” Opt. Express 17(12), 10298–10303 (2009).
137 Y.-K. Moon, Y.-J. Lee, S. In Jo, Y. Kim, J. Uk Heo, J.-H. Baek, S.-G. Kang, C.-J. Yu, and J.-H. Kim, “Effects of surface modification with reactive mesogen on the anchoring strength of liquid crystals,” J. Appl. Phys. 113(23), 234504 (2013).
138 S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
139 S. H. Kim, L.-C. Chien, and L. Komitov, “Short pitch cholesteric electro-optical device stabilized by nonuniform polymer network,” Appl. Phys. Lett. 86(16), 161118 (2005).
140 C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express 19(16), 14999–15008 (2011).
141 R.-Q. Ma and D.-K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E 61(2), 1567 (2000).
142 D.-K. Yang, Y. Cui, H. Nemati, X. Zhou, and A. Moheghi, “Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals,” J. Appl. Phys. 114(24), 243515 (2013).
143 J. Sun, S.-T. Wu, and Y. Haseba, “A low voltage submillisecond-response polymer network liquid crystal spatial light modulator,” Appl. Phys. Lett. 104(2), 13_1 (2014).
144 J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
145 Y. Inoue, H. Yoshida, and M. Ozaki, “Nematic liquid crystal nanocomposite with scattering-free, microsecond electro-optic response,” Opt. Mater. Express 4(5), 916–923 (2014).
146 E. Ouskova, L. D. Sio, R. Vergara, T. J. White, N. Tabiryan, and T. J. Bunning, “Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites,” Appl. Phys. Lett. 105(23), 231122 (2014).
147 F. Peng, D. Xu, H. Chen, and S.-T. Wu, “Low voltage polymer network liquid crystal for infrared spatial light modulators,” Opt. Express 23(3), 2361–2368 (2015).
148 J. Sun, H. Xianyu, Y. Chen, and S.-T. Wu, “Submillisecond-response polymer network liquid crystal phase modulators at 1.06-μ m wavelength,” Appl. Phys. Lett. 99(2), 021106 (2011).
149 J. Sun, Y. Chen, and S.-T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
150 S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
151 W. De Jeu, “Physical properties of liquid crystalline materials in relation to their applications,” Mol. Cryst. Liq. Cryst. 63(1), 83–109 (1981).
152 C.-C. Hsu, Y.-X. Chen, H.-W. Li, and J.-s. Hsu, “Low switching voltage ZnO quantum dots doped polymer-dispersed liquid crystal film,” Opt. Express 24(7), 7063–7068 (2016).
153 C.-Y. Chien and C.-R. Sheu, “Doping Liquid Crystal Cells with Photocurable Monomer via Holographic Exposure to Realize Optical-Scattering-Free Infrared Phase Modulators with Fast Response Time,” Crystals 7(7), 208 (2017).
154 A. Lorenz, L. Braun, and V. Kolosova, “Continuous optical phase modulation in a copolymer network nematic liquid crystal,” ACS Photo. 3(7), 1188–1193 (2016).
155 D. H. Song, S. R. Lee, T.-H. Yoon, and J. C. Kim, “Multi-dimensional liquid crystal alignment effect of polymer wall on vertically aligned liquid crystal cell,” Jpn. J. Appl. Phys. 49(1R), 011702 (2010).
156 Q. Wang and S. Kumar, “Submillisecond switching of nematic liquid crystal in cells fabricated by anisotropic phase-separation of liquid crystal and polymer mixture,” Appl. Phys. Lett. 86(7), 071119 (2005).
157 D. K. Yang, L. C. Chien, and J. Doane, “Cholesteric liquid crystal/polymer dispersion for haze‐free light shutters,” Appl. Phys. Lett. 60(25), 3102 (1992).
158 J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photo. 4(1), 1–7 (2016).
159 J.-L. Zhu, S.-B. Ni, Y. Song, E.-W. Zhong, Y.-J. Wang, C. Ping Chen, Z. Ye, G. He, D.-Q. Wu, and X.-L. Song, “Improved Kerr constant and response time of polymer-stabilized blue phase liquid crystal with a reactive diluent,” Appl. Phys. Lett. 102(7), 071104 (2013).
160 J. Xiang and O. D. Lavrentovich, “Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching,” Appl. Phys. Lett. 103(5), 051112 (2013).
161 Y. Haseba and H. Kikuchi, “Optically isotropic chiral liquid crystals induced by polymer network and their electro-optical behavior,” Mol. Cryst. Liq. Cryst. 470(1), 1–9 (2007).
162 Y.-C. Yang and D.-K. Yang, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett. 98(2), 023502 (2011).
163 W.-R. Chen and J.-C. Hwang, “The phase behaviour and optical properties of a nematic/chiral dopant liquid crystalline mixture system,” Liq. Cryst. 31(11), 1539–1546 (2004).
164 I. Dierking, L. Kosbar, A. Lowe, and G. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures I. The influence of curing temperature,” Liq. Cryst. 24(3), 387–395 (1998).
165 I. Dierking, L. Kosbar, A. Lowe, and G. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24(3), 397–406 (1998).
166 I. Dierking, “Fractal dimensionality of polymer networks formed by photopolymerization in a liquid crystal medium,” J. Phys. D: Appl. Phys 35(20), 2520 (2002).
167 I. Dierking, L. Kosbar, A. Afzali-Ardakani, A. Lowe, and G. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454 (1997).
168 C. V. Rajaram, S. Hudson, and L. Chien, “Morphology of polymer-stabilized liquid crystals,” Chem. Mater 7(12), 2300–2308 (1995).
169 M. Mitov, A. Boudet, P. Sopena, and P. Sixou, “Morphological study of a chiral polymer network in a nematic liquid crystal from a concentration gradient,” Liq. Cryst. 23(6), 903–010 (1997).
170 R. Hikmet and H. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51(6), 5824 (1995).
171 J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw