進階搜尋


下載電子全文  
系統識別號 U0026-2507201722001200
論文名稱(中文) 非接觸式電動車供電軌道系統之區塊分段激發感應耦合結構
論文名稱(英文) Segment-Excited Inductively Coupled Structure for Contactless EV Power Transfer Track System
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 王郁淇
研究生(英文) Yu-Chi Wang
學號 N26044228
學位類別 碩士
語文別 中文
論文頁數 78頁
口試委員 召集委員-林法正
口試委員-莫清賢
口試委員-陳建富
指導教授-李嘉猷
中文關鍵字 非接觸式電動車供電軌道  耦合結構陣列區塊  分段激發控制系統 
英文關鍵字 Contactless EV power track  Coupled structure array  Segment- excited control system 
學科別分類
中文摘要 本論文旨在針對零碳排放及零空氣汙染之綠色節能型大眾運輸用電動載具,應用非接觸式電能傳輸技術,研製非接觸式電動車供電軌道系統之區塊分段激發感應耦合結構。文中首先藉由磁場模擬軟體就軌道陣列線圈進行分析,選擇擁有均勻磁場分佈之螺旋型結構,以提高電動車於軌道上垂直間距與水平偏移容忍度,且根據模擬結果選定有效率接收電能之拾取線圈尺寸。整體軌道以陣列區塊形式拼裝而成,為防止軌道線圈同時開啟電源造成電能浪費,利用單晶片控制分段激發系統來達到電能有效運用,並經由理論分析選用符合應用特性之雙邊諧振電路,提升系統電能傳輸能力與穩定性。最後實驗量測結果,單一供電陣列軌道與電動車垂直間距12 cm且精準對位下,系統輸入160 V,負載為80.7 Ω時,有最大輸出能力911 W及整體系統最高效率75%。
英文摘要 This thesis is aimed to utilize the technology of contactless power transmission to design and implement contactless electric vehicle (EV) power track transfer system with segment-excited inductively coupled structure for the zero carbon emissions and air pollution electric powered public transport. First, to increase lateral and longitudinal displacement tolerances between the EV and track, we have analyzed the track coil by the simulation software of magnetic field and selected the spiral structure with a uniform magnetic field distribution. The size of pickup coil has also been determined to let the system receive power efficiently. The overall track consists of pad arrays. For the purpose of reducing power loss caused by turning on the track power simultaneously, the segment-excited control has been added in the system. According to theoretical analysis, we have chosen the most appropriate resonant circuits in both track and pickup to enhance the ability of power transmission. Based on the experimental results, the maximum output power in the system is 911 W and the highest efficiency is 75% with input voltage 160 V and load resistance 80.7 Ω under 12 cm air-gap.
論文目次 中文摘要 I
英文摘要 II
英文延伸摘要 III
誌謝 VIII
目錄 IX
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1-1 研究背景與目的 1
1-2 非接觸式電動車供電軌道應用 4
1-3 研究方法 7
1-4 論文大綱 8
1-5 論文主要貢獻 9
第二章 非接觸式供電軌道原理與特性 10
2-1 前言 10
2-2 感應電能傳輸原理 10
2-3 感應線圈之非理想效應 13
2-3-1 集膚效應 13
2-3-2 近接效應 15
2-4 非接觸式感應供電軌道耦合原理 16
2-4-1 感應耦合結構電路模型分析 16
2-4-2 結構耦合能力推導分析 18
2-5 具分段激發之非接觸式供電陣列軌道系統19
2-5-1 非接觸式感應耦合結構 19
2-5-2 諧振電路 20
2-5-3 分段激發控制機制 21
第三章 螺旋型感應耦合結構模擬與分析 24
3-1 前言 24
3-2 線圈感應耦合結構分析 24
3-2-1 軌道線圈結構模擬及分析 24
3-2-2 電能拾取器線圈及導磁條配置模擬與分析29
3-3 諧振電路分析 31
3-3-1 初級側諧振電路 31
3-3-2 次級側諧振與反射阻抗分析 36
第四章 非接觸式電動車供電軌道系統電路 40
4-1 前言 40
4-2 整體系統電路架構 40
4-3 感應耦合結構與諧振電路參數設計 41
4-3-1 感應耦合線圈設計 42
4-3-2 諧振電路設計 44
4-4 非接觸式供電軌道電路架構 44
4-4-1 全橋變流器電路 45
4-4-2 啟動電路 47
4-5 電能拾取器電路架構 48
4-6 分段激發控制系統 49
4-6-1 RF接收發送模組電路 50
4-6-2 超音波感測模組 51
4-6-3 單晶片控制電路 52
4-6-4 紅外線感測模組 53
4-6-5 板塊電源開關模組 54
4-7 供電軌道電源配置 54
4-8 非接觸式電動車供電軌道設計流程 56
第五章 系統模擬與實驗結果 59
5-1 前言 59
5-2 供電軌道系統規格 59
5-3 Simplis電路模擬 60
5-4 單一軌道陣列實驗結果與波形量測 62
5-5 非接觸式供電軌道實驗結果 68
5-4-1 分段激發控制系統量測 68
5-4-2 整體供電軌道系統量測 69
第六章 結論與未來研究方向 71
6-1 結論 71
6-2 未來研究方向 72
參考文獻 73

參考文獻 [1] W. X. Zhong, Xun Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136–4144, Sep. 2011.
[2] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620–627, May 2005.
[3] 莊倍源,可攜式多媒體電子產品用非接觸型感應供電墊研製,國立成功大學電機工程學系碩士論文,2009年。
[4] 賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,國立成功大學電機工程學系碩士論文,2009年。
[5] 林哲立,植入式神經電刺激器之非接觸式射頻饋電電路研製,國立成功大學電機工程學系碩士論文,2012年。
[6] 張繼安,電動車用非接觸式三相感應充電槳系統之研製,國立成功大學電機工程學系碩士論文,2011年。
[7] 趙善任,應用於非接觸式電動載具充電平台之改良三相感應耦合結構,國立成功大學電機工程學系碩士論文,2012年。
[8] A. Tejeda, G. A. Covic, and J. T. Boys, “Novel single-sided ferrite-less magnetic coupler for roadway EV charging,” in Proc. IEEE ECCE, 2015, pp. 3148–3153.
[9] G. A. Covic, M. L. G. Kissin, D. Kacprzak, N. Clausen, and H. Hao, “A bipolar primary pad topology for EV stationary charging and highway power by inductive coupling,” in Proc. IEEE ECCE, 2011, pp. 1832–1838.
[10] E-MOSS Corp. (2012, Oct.). First 12 meter electric bus with wireless inductive charging. Netherlands.[Online]. Available:http://www.e-moss.
com/nl/nieuws/first-12-meter-electric-bus-with-wireless-inductive-charging
[11] 楊昆翰,非接觸式片狀感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[12] 張雅婷,電動搬運載具用非接觸式條帶型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2014年。
[13] “IPT charge for electric vehicles,” Conductix-Wampfler delachaux group, Germany, KAT9200-0001-E, 2009.
[14] “Corporate profile,” Daifuku Corp., Japan, CP, 2016.
[15] 蘇哲彬,電動載具用非接觸式感應饋電軌道:交錯式編織型陣列區塊耦合系統之研製,國立成功大學電機工程學系碩士論文,2010年。
[16] 張孟詔,電動載具用非接觸式感應饋電軌道:載具側三埠式充電/供電系統,國立成功大學電機工程學系碩士論文,2010年。
[17] C. C. Mi, G. Buja, S. Y. Choi, and C. T. Rim, “Modern advances in wireless power transfer systems for roadway powered electric vehicles,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6533–6545, Oct. 2016.
[18] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Trends of wireless power transfer systems for roadway powered electric vehicles,” in Proc. IEEE VTC Spring, 2014, pp. 1–5.
[19] S. Y. Choi, S. Y. Jeong, B. W. Gu, G. C. Lim, and C. T. Rim, “Ultraslim S-type power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6456-6468, Nov. 2015.
[20] C. Park, S. Lee, S. Y. Jeong, G. H. Cho, and C. T. Rim, “Uniform power I-type inductive power transfer system with DQ-power supply rails for on-line electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6446-6455, Apr. 2015.
[21] V. X. Thai, S. Y. Choi, B. H. Choi, J. H. Kim, and C. T. Rim, “Coreless power supply rails compatible with both stationary and dynamic charging of electric vehicles,” in Proc. IEEE IFEEC, 2015, pp. 1-5.
[22] M. Kim, H. Kim, D. Kim, Y. Jeong, H. H. Park, and S. Ahn, “A three-phase wireless-power-transfer system for online electric vehicles with reduction of leakage magnetic fields,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 11, pp. 3806-3813, Nov. 2015.
[23] J. H. Kim, B. S. Lee, J. H. Lee, and J. H. Baek, “Development of 1MW inductive power transfer system for a high speed train,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6242–6250, Oct. 2015.
[24] O. C. Onar, J. M. Miller, S. L. Campbell, C. Coomer, C. P. White, and L. E. Seiber, “A novel wireless power transfer for in-motion EV/PHEV charging,” in Proc. IEEE APEC, 2013, pp. 3073–3080.
[25] J. M. Miller, L. M. Li, O. C. Onar, and P. T. Jones, “ORNL experience and challenges facing dynamic wireless power charging of EV's,” IEEE Circuits Syst. Mag., vol. 15, no. 2, pp. 40–53, May 2015.
[26] H. H. Wu and M. P. Masquelier, “An overview of a 50kW inductive charging system for electric buses,” in Proc. IEEE ITEC, 2015, pp. 1-4.
[27] Z. Pantic, S. M. Lukic, and K. Lee, “Receivers for multifrequency wireless power transfer: design for minimum interference,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 234-241, Oct. 2014.
[28] Z. Pantic, S. M. Lukic, and K. Lee, “Reflexive field containment in dynamic inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4592-4602, Sep. 2014.
[29] A. Echols, S. Mukherjee, M. Mickelsen, and Z. Pantic, “Communication infrastructure for dynamic wireless charging of electric vehicles,” in Proc. IEEE WCNC, 2017, pp. 1-6.
[30] M. Budhui, J. T. Boys, and G. A. Covic, “Design and optimization of circular magnetic structures for lumped inductive power transfer systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096–3108, Nov. 2011.
[31] G. A. Covic and J. T. Boys, “Inductive power transfer,” in Proc. IEEE, vol. 101, no. 6, pp. 1276–1289, Jan. 2013.
[32] J. T. Boys, N. A. Keeling, and G. A. Covic, “A unity-power-factor IPT pickup for high-power applications,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 744–751, Feb. 2010.
[33] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148–157, 2004.
[34] C. Y. Huang, J. E. -James, and G. A. Covic, “Design considerations for variable coupling lumped coil systems,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 680–689, Feb. 2015.
[35] H. L. Li, A. P. Hu, G. A. Covic, and C. S. Tang, “Optimal coupling condition of IPT system for achieving maximum power transfer,” Electron. Lett., vol. 45, no. 1, pp. 76–77, Jan. 2009.
[36] Bombardier Inc. PRIMOVE true e-mobility.[Online].Available: http://
primove.bombardier.com/media/news/#125-game-changing-e-
[37] General Information of INTIS for Developments of Wireless Electric Vehicles in INTIS Website. (2016). [Online]. Available: http://www.
intis.de/intis/mobility.html
[38] J. T. Boys, G. A. Covic, and A. W. Green, “Stability and control of inductively coupled power transfer systems,” IEE Proceedings - Electric Power Applications, vol. 147, no. 1, pp. 37–43, Jan. 2000.
[39] G. A. Covic and J. T. Boys, “Modern trends in inductive power transfer for transportation applications,” IEEE J. Emerging Select. Topics Power Electron., vol. 1, no. 1, pp. 28–41, Mar. 2013.
[40] 張遠帆,具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道,國立成功大學電機工程學系碩士論文,2013年。
[41] 胡采梅,具分段激發疊圈型感應耦合結構之非接觸式供電陣列軌道,國立成功大學電機工程學系碩士論文,2015年。
[42] 蔡霈裕,多環交疊型無線充電平台之優化設計,國立成功大學電機工程學系碩士論文,2014年。
[43] M. Budhui, J. T. Boys, G. A. Covic, and C. Y. Huang, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318–328, 2013.
[44] A. Zaheer, H. Hao, G. A. Covic, and D. Kacprzak, “Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1937–1955, Jan. 2014.
[45] A. Zaheer, H. Hao, G. A. Covic, and D. Kacprzak, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308–1314, Oct. 2005.
[46] O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems,” in Proc. IEEE Power Syst. Technol. Conf., 2000, pp. 85–90.
[47] M. Borage, S. Tiwari, and S. Kotaiah, “Analysis and design of an LCL-T resonant converter as a constant-current power supply,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1547–1554, Dec. 2005.
[48] H. H. Wu, A. Gilchrist, D. Bronson, and K. D. Sealy, “A high efficiency 5 kW inductive charger for EVs using dual side control,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 585 - 595, Apr. 2012.
[49] T. S. Lee, S. J. Huang, C. C. Tai, R. Y. Chen, and B. R. Jiang, “Design of wireless power transfer for dynamic power transmission with position-detection mechanism,” in Proc. IEEE ICIT, 2015, pp. 976-981
[50] Z. H. Wang, Y. P. Li, Y. Sun, C. S. Tang, and X. Lv, “Load detection model of voltage-fed inductive power transfer system,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5233–5243, Feb. 2013.
[51] G. Nagendra, L. Chen, G. A. Covic, and J. Boys, “Detection of EVs on IPT highways,” in Proc. IEEE APEC, 2014, pp. 1604-1611.
[52] S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, “New cross-segmented power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5832–5841, Dec. 2013.
[53] K. Song, C. Zhu, K. E. Koh, T. Imura, and Y. Hori, “Wireless power transfer for running EV powering using multi-parallel segmented rails,” in Proc. IEEE WoW, 2015, pp. 1-6.
[54] UCC3895 Data Sheet, Texas Instruments Inc., 2013.
[55] IR2110 Data Sheet, International Rectifier Inc., 2005.
[56] “Ultrasonic Ranging Module HC- SR04,” elecfreaks, China, HC-SR04.
[57] ARDUINO LLC Inc. Arduino UNO & Genuino UNO.[Online].
Available: https://www.arduino.cc/
[58] “紅外線(IR)發射器與接收器,” Light-Tech Electronic Co., Taiwan, MTARDALL134, 2013.


論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw