進階搜尋


下載電子全文  
系統識別號 U0026-2507201717354400
論文名稱(中文) 第一原理計算鋰離子電池層狀正極材料之摻雜效應
論文名稱(英文) An ab-initio study on the doping effect of layered cathode materials in lithium-ion batteries
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 梁智超
研究生(英文) Chih-Chao Liang
學號 N56044559
學位類別 碩士
語文別 中文
論文頁數 79頁
口試委員 指導教授-林士剛
口試委員-郭錦龍
口試委員-劉浩志
口試委員-許文東
中文關鍵字 LiNi1/3Co1/3Mn1/3O2  摻雜  正極層狀材料  第一原理計算  密度泛函理論  鋰離子電池 
英文關鍵字 Lithium-ion batteries  cathode material  LiNi1/3Mn1/3Co1/3O2  density functional theory  doping 
學科別分類
中文摘要 近年來,由於儲能系統的需求日漸增加,鋰離子電池具有重量輕、高能量密度、高電壓與高電容量等優點,現今已成為被廣泛應用的儲能系統之一,在追求高電壓、高電容量與高穩定性電極的過程中,層狀結構材料具備前兩者電化學性質之特性,成為十分具有潛力的電極材料。其中,LiMO2 (M = NixCoyMnz)之三元層狀材料相較於一元 (M = Ni、Co、Mn)、二元層狀材料 (M = NixCoy、NixMny、MnxCoy)有較佳的電化學性質,但是在充放電過程中仍舊有氣體的產生使過渡金屬離子離開過渡金屬層遷至Li層,阻礙Li通道導致穩定性不佳的問題,實驗上證實摻雜元素於電極中可改善電極之循環充放電的電化學性質並同步增加結構穩定性;然而,改善材料電化學性質與結構穩定性的原因仍並未被探究。本研究使用第一原理計算方法與Bader charge分析深入探討現今已商業化之電極LiNi1/3Co1/3Mn1/3O2其氧價數與氧缺陷生成能的關係,並以此關係為依據,將實驗文章常報導之摻雜元素-Al分別摻雜於Ni、Co、Mn與Li四個位置後,計算六種組成系統中取代與被取代元素個別的化學勢能(Chemical potential)進而得知缺陷生成能範圍,確認摻雜Al於Co與Mn最可能摻雜之位置,如此建立四元系統以上之化學勢能計算方法;而後分析Al於Co、Mn位置之氧價數趨勢與未摻雜模型比較,得知摻雜於Co位置為降低氧價數最甚者,結合最低價數氧的位置分布圖與能態密度圖判定摻雜Al於Co可與周圍O產生強離子鍵,如此可抑制氧的脫除並改善結構穩定性。
英文摘要 In recent years, layered structure cathodes have become one of the most popular materials in lithium-ion batteries. However, poor cycling performance is still the fatal weakness because of the oxygen vacancy formation during charging and discharging. People have found that doping may improve cycling performance; nevertheless, mechanism of doping into materials and the improvement of cycling performance are not clear. In this work, the relative position between transition metal ions and oxygen ions in LiNi1/3Mn1/3Co1/3O2 atomistic model was investigated through pair distribution functions, and three different chemical environments of oxygen were discovered. Moreover, high correlation between oxygen charge and oxygen vacancy formation energy was determined in pristine LiNi1/3Mn1/3Co1/3O2 model by using ab-intio calculations and Bader discharge analysis. Based on proposed pristine model, atomistic models with several metal elements doped in Ni, Co, Mn and Li sites were also constructed. Doping defect formation energy was also calculated through defining chemical potential of each element from invariant points coexisting with five competing phases. Density of states figures and the oxygen charge trend show the less hybridization between doping element and oxygen ions, the more negative oxygen charge is, which improves cycling performance of LiNi1/3Mn1/3Co1/3O2 most.
論文目次 摘要...I
Abstract...II
誌謝...IX
目錄...X
表目錄...XII
圖目錄...XIII
第一章 前言...1
第二章 文獻回顧...3
2.1 鋰離子電池...3
2.2 負極材料...6
2.3 電解質...9
2.4 隔離膜...10
2.5 正極材料...11
2.5.1 層狀單元氧化物材料...13
2.5.2 層狀二元氧化物材料...15
2.5.3 層狀三元氧化物材料...16
2.5.4 層狀三元氧化物摻雜...21
2.6 第一原理計算於鋰離子電池的應用...24
2.7 元素化學勢能...27
2.8 研究動機...30
第三章 計算方法...31
3.1 密度泛函理論...31
3.1.1 Hohenberg-Kohn理論...32
3.1.2 Kohn-Sham理論...33
3.1.3 交換關聯泛函...34
3.1.4 贋勢...35
3.1.5 自洽場計算方法...36
3.2 DFT+U方法...37
3.3 Bader charge 分析方法...38
3.4 徑向分布函數分析方法...38
3.5 元素化學勢能計算...40
第四章 結果與討論...42
4.1 LiNi1/3Co1/3Mn1/3O2(NMC)結構分析...44
4.2 NMC氧缺陷生成能與氧價數關係...49
4.3 摻雜NMC之原子級模型建立...51
4.4 取代缺陷生成能...53
4.5 元素摻雜後氧價數變化...56
4.6 摻雜後氧位置分布與能態密度圖...56
第五章 結論...58
參考文獻...59
附錄...73
參考文獻 1.H.-H. Hsu, 人為的全球暖化與氣候變遷, in The 4th International Conference of Atmospheric Action Network East Asia. 1998: Taipei.
2.J.B. Goodenough and Y. Kim, Challenges for Rechargeable Li Batteries†. Chemistry of Materials, 2010. 22(3): p. 587-603.
3.M.D. Bhatt and C. O'Dwyer, Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys, 2015. 17(7): p. 4799-4844.
4.C. Liu, F. Li, L.P. Ma, and H.M. Cheng, Advanced materials for energy storage. Adv Mater, 2010. 22(8): p. E28-62.
5.R. Chen, T. Zhao, X. Zhang, L. Li, and F. Wu, Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horiz., 2016. 1(6): p. 423-444.
6.J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(15): p. 359-367.
7.頂立科技. 2017年中國動力鋰離子電池行業市場規模及發展趨勢預測. 礦易幫 2016.
8.M.S. Whittingham, Electrical Energy Storage and Intercalation Chemistry. SCIENCE, 1976. 192(4244): p. 1126.
9.S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 2014. 257: p. 421-443.
10.W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 2014. 7(2): p. 513-537.
11.M. Zanini, S. Basu, and J.E. Fischer, Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound. Carbon, 1978. 16(3): p. 211-212.
12.S. Basu, C. Zeller, P.J. Flanders, C.D. Fuerst, W.D. Johnson, and J.E. Fischer, Synthesis and properties of lithium-graphite intercalation compounds. Materials Science and Engineering, 1979. 38(3): p. 275-283.
13.K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, LixCoO2 (0、x、-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
14.T. Nagaura and K. Tozawa, Lithium ion rechargeable battery. Progress in Batteries & Solar Cells, 1990. 9: p. 209-212.
15.http://www.sonyenergy-devices.co.jp/en/keyword/.
16.B. Xu, D. Qian, Z. Wang, and Y.S. Meng, Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
17.http://www.jcharger.com/custom_9951.html.
18.http://batteryuniversity.com/learn/.
19.科技台灣. 14-19電池的分類. 2012.
20.M.M. Thackeray, C. Wolverton, and E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science, 2012. 5(7): p. 7854.
21.F. Cheng, J. Liang, Z. Tao, and J. Chen, Functional materials for rechargeable batteries. Adv Mater, 2011. 23(15): p. 1695-1715.
22.R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, A review of advanced and practical lithium battery materials. Journal of Materials Chemistry, 2011. 21(27): p. 9938.
23.H. Li and H. Zhou, Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun (Camb), 2012. 48(9): p. 1201-1217.
24.G.-A. Nazri and G. Pistoia, Lithium Batteries. 2003: Springer US.
25.B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010. 195(9): p. 2419-2430.
26.M. Wagemaker and F.M. Mulder, Properties and Promises of Nanosized Insertion Materials for Li-Ion Batteries. Accounts of Chemical Research, 2013. 46(5): p. 1206-1215.
27.Z. Chen, I. Belharouak, Y.K. Sun, and K. Amine, Titanium-Based Anode Materials for Safe Lithium-Ion Batteries. Advanced Functional Materials, 2013. 23(8): p. 959-969.
28.Z. Hong and M. Wei, Layered titanate nanostructures and their derivatives as negative electrode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2013. 1(14): p. 4403.
29.A. Moretti, G.-T. Kim, D. Bresser, K. Renger, E. Paillard, R. Marassi, M. Winter, and S. Passerini, Investigation of different binding agents for nanocrystalline anatase TiO2 anodes and its application in a novel, green lithium-ion battery. Journal of Power Sources, 2013. 221: p. 419-426.
30.A.L. Mohana Reddy, S.R. Gowda, M.M. Shaijumon, and P.M. Ajayan, Hybrid nanostructures for energy storage applications. Adv Mater, 2012. 24(37): p. 5045-5064.
31.C.M. Park, J.H. Kim, H. Kim, and H.J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev, 2010. 39(8): p. 3115-3141.
32.W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): p. 13-24.
33.L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science, 2011. 4(8): p. 2682.
34.X. Li and C. Wang, Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application. J. Mater. Chem. A, 2013. 1(2): p. 165-182.
35.P. Poizot, S. Laruelle, S. Grugeon, and J.M. Tarascon, Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds toward Li. Journal of The Electrochemical Society, 2002. 149(9): p. A1212.
36.J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, and X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater, 2012. 24(38): p. 5166-5180.
37.K. Xu, Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev, 2014. 114(23): p. 11503-11618.
38.K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 2004. 104(10): p. 4303-4418.
39.葉定儒、陳金銘、廖世傑. 高安全鋰電池電解液. 材料世界網 2012.
40.李治宏、龔丹誠, 鋰電池隔離膜發展趨勢與近況. 材料世界網, 2015.
41.S.S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007. 164(1): p. 351-364.
42.N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
43.M.S. Islam and C.A. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev, 2014. 43(1): p. 185-204.
44.A.R. Armstrong and P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 1996. 381(6582): p. 499-500.
45.L. Wang, J. Li, X. He, W. Pu, C. Wan, and C. Jiang, Recent advances in layered LiNi x CoyMn1−x−y O2 cathode materials for lithium ion batteries. Journal of Solid State Electrochemistry, 2008. 13(8): p. 1157-1164.
46.J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992. 46(11): p. 6671-6687.
47.J. Xu, F. Lin, M.M. Doeff, and W. Tong, A review of Ni-based layered oxides for rechargeable Li-ion batteries. J. Mater. Chem. A, 2017. 5(3): p. 874-901.
48.W. Liu, P. Oh, X. Liu, M.J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed Engl, 2015. 54(15): p. 4440-4457.
49.莊祐誠, 碩士論文-以第一原理計算探討鋰離子電池中複合層狀富鋰正極材料之充放電機制. 2016, 國立成功大學.
50.T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochimica Acta, 1993. 38(9): p. 1159-1167.
51.J.W. Fergus, Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195(4): p. 939-954.
52.T. Ohzuku and R.J. Brodd, An overview of positive-electrode materials for advanced lithium-ion batteries. Journal of Power Sources, 2007. 174(2): p. 449-456.
53.T. Ohzuku, A. Ueda, and M. Kouguchi, Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2    (  R 3̄m )  for Lithium‐Ion (Shuttlecock) Batteries. Journal of The Electrochemical Society, 1995. 142(12): p. 4033-4039.
54.B. Ammundsen, J. Desilvestro, T. Groutso, D. Hassell, J.B. Metson, E. Regan, R. Steiner, and P.J. Pickering, Formation and Structural Properties of Layered LiMnO2 Cathode Materials. Journal of The Electrochemical Society, 2000. 147(11): p. 4078-4082.
55.J.M. Paulsen, R.A. Donaberger, and J.R. Dahn, Layered T2-, O6-, O2-, and P2-Type A2/3[M‘2+1/3M4+2/3]O2 Bronzes, A = Li, Na; M‘ = Ni, Mg; M = Mn, Ti. Chemistry of Materials, 2000. 12(8): p. 2257-2267.
56.W. Luo and J.R. Dahn, Comparative study of Li[Co1−zAlz]O2 prepared by solid-state and co-precipitation methods. Electrochimica Acta, 2009. 54(20): p. 4655-4661.
57.T. Ohzuku and Y. Makimura, Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries. Chemistry Letters, 2001. 30(7): p. 642-643.
58.N. Yabuuchi and T. Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. Journal of Power Sources, 2003. 119–121: p. 171-174.
59.Y. Koyama, N. Yabuuchi, I. Tanaka, H. Adachi, and T. Ohzuku, Solid-State Chemistry and Electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for Advanced Lithium-Ion Batteries. Journal of The Electrochemical Society, 2004. 151(10): p. A1545.
60.C. Liang, F. Kong, R.C. Longo, S. Kc, J.-S. Kim, S. Jeon, S. Choi, and K. Cho, Unraveling the Origin of Instability in Ni-Rich LiNi1–2xCoxMnxO2(NCM) Cathode Materials. The Journal of Physical Chemistry C, 2016. 120(12): p. 6383-6393.
61.H.-J. Noh, S. Youn, C.S. Yoon, and Y.-K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of Power Sources, 2013. 233: p. 121-130.
62.W.H.H.K.T.B.W.X. Tang Aidong, Layered Li-Ni-Co-Mn-O as Cathode Materials for Lithium Ion Battery. Progress in Chemistry, 2007. 19(9): p. 1313-1321.
63.J.-M. Kim and H.-T. Chung, The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Electrochimica Acta, 2004. 49(6): p. 937-944.
64.S.M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake, S.J. Cho, K.B. Kim, K.Y. Chung, X.Q. Yang, and K.W. Nam, Structural changes and thermal stability of charged LiNixMnyCozO(2) cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl Mater Interfaces, 2014. 6(24): p. 22594-22601.
65.F. Lin, I.M. Markus, D. Nordlund, T.C. Weng, M.D. Asta, H.L. Xin, and M.M. Doeff, Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun, 2014. 5: p. 3529.
66.J. Zheng, T. Liu, Z. Hu, Y. Wei, X. Song, Y. Ren, W. Wang, M. Rao, Y. Lin, Z. Chen, J. Lu, C. Wang, K. Amine, and F. Pan, Tuning of Thermal Stability in Layered Li(NixMnyCoz)O2. J Am Chem Soc, 2016. 138(40): p. 13326-13334.
67.C.X. Ding, Y.C. Bai, X.Y. Feng, and C.H. Chen, Improvement of electrochemical properties of layered LiNi1/3Co1/3Mn1/3O2 positive electrode material by zirconium doping. Solid State Ionics, 2011. 189(1): p. 69-73.
68.Y. Ding, P. Zhang, Z. Long, Y. Jiang, and F. Xu, Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning. Journal of Alloys and Compounds, 2009. 487(1-2): p. 507-510.
69.S. Na, H. Kim, and S. Moon, The effect of Si doping on the electrochemical characteristics of LiNiMnCoO. Solid State Ionics, 2005. 176(3-4): p. 313-317.
70.G.-H. Kim, M.-H. Kim, S.-T. Myung, and Y.K. Sun, Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2−zFz as lithium intercalation material. Journal of Power Sources, 2005. 146(1-2): p. 602-605.
71.Y. Chen, Q. Jiao, L. Wang, Y. Hu, N. Sun, Y. Shen, and Y. Wang, Synthesis and characterization of Li1.05Co1/3Ni1/3Mn1/3O1.95X0.05 (X=Cl, Br) cathode materials for lithium-ion battery. Comptes Rendus Chimie, 2013. 16(9): p. 845-849.
72.H.-L. Zhang and S. Liu, Synthesis and Characterization of LiNi1/3Co1/3Mn1/3O2−xClx as Cathode Materials for Lithium Ion Batteries at 55°C. Advances in Materials Science and Engineering, 2013. 2013: p. 1-6.
73.D. Liu, Z. Wang, and L. Chen, Comparison of structure and electrochemistry of Al- and Fe-doped LiNi1/3Co1/3Mn1/3O2. Electrochimica Acta, 2006. 51(20): p. 4199-4203.
74.Y. Ding, P. Zhang, Y. Jiang, and D. Gao, Effect of rare earth elements doping on structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 for lithium-ion battery. Solid State Ionics, 2007. 178(13-14): p. 967-971.
75.S.-H. Park, S.W. Oh, and Y.-K. Sun, Synthesis and structural characterization of layered Li[Ni1/3+xCo1/3Mn1/3−2xMox]O2 cathode materials by ultrasonic spray pyrolysis. Journal of Power Sources, 2005. 146(1-2): p. 622-625.
76.P.B. Samarasingha, A. Wijayasinghe, M. Behm, L. Dissanayake, and G. Lindbergh, Development of cathode materials for lithium ion rechargeable batteries based on the system Li(Ni1/3Mn1/3Co(1/3-x)Mx)O2, (M=Mg, Fe, Al and x=0.00 to 0.33). Solid State Ionics, 2014. 268: p. 226-230.
77.Y. Li, Y. Li, S. Zhong, F. Li, and J. Yang, Synthesis and Electrochemical Properties of Y-Doped LiNi1/3Mn1/3Co1/3O2Cathode Materials for Li-Ion Battery. Integrated Ferroelectrics, 2011. 127(1): p. 150-156.
78.Y.S. Meng, Y.W. Wu, B.J. Hwang, Y. Li, and G. Ceder, Combining Ab Initio Computation with Experiments for Designing New Electrode Materials for Advanced Lithium Batteries: LiNi[sub 1/3]Fe[sub 1/6]Co[sub 1/6]Mn[sub 1/3]O[sub 2]. Journal of The Electrochemical Society, 2004. 151(8): p. A1134.
79.G.-H. Kim, S.-T. Myung, H.-S. Kim, and Y.-K. Sun, Synthesis of spherical Li[Ni(1/3−z)Co(1/3−z)Mn(1/3−z)Mgz]O2 as positive electrode material for lithium-ion battery. Electrochimica Acta, 2006. 51(12): p. 2447-2453.
80.J. Li, X. He, R. Zhao, C. Wan, C. Jiang, D. Xia, and S. Zhang, Stannum doping of layered LiNi3/8Co2/8Mn3/8O2 cathode materials with high rate capability for Li-ion batteries. Journal of Power Sources, 2006. 158(1): p. 524-528.
81.Y. Sun, Y. Xia, and H. Noguchi, The improved physical and electrochemical performance of LiNi0.35Co0.3−xCrxMn0.35O2 cathode materials by the Cr doping for lithium ion batteries. Journal of Power Sources, 2006. 159(2): p. 1377-1382.
82.L.Q. Wang, L.F. Jiao, H. Yuan, J. Guo, M. Zhao, H.X. Li, and Y.M. Wang, Synthesis and electrochemical properties of Mo-doped Li[Ni1/3Mn1/3Co1/3]O2 cathode materials for Li-ion battery. Journal of Power Sources, 2006. 162(2): p. 1367-1372.
83.S. Ye, Y. Xia, P. Zhang, and Z. Qiao, Al, B, and F doped LiNi1/3Co1/3Mn1/3O2 as cathode material of lithium-ion batteries. Journal of Solid State Electrochemistry, 2006. 11(6): p. 805-810.
84.H.J. Bang, B.C. Park, J. Prakash, and Y.K. Sun, Synthesis and electrochemical properties of Li[Ni0.45Co0.1Mn0.45−xZrx]O2 (x=0, 0.02) via co-precipitation method. Journal of Power Sources, 2007. 174(2): p. 565-568.
85.B. Lin, Z. Wen, Z. Gu, and X. Xu, Preparation and electrochemical properties of Li[Ni1/3Co1/3Mn1−x/3Zrx/3]O2 cathode materials for Li-ion batteries. Journal of Power Sources, 2007. 174(2): p. 544-547.
86.Y. Ding, P. Zhang, and D. Gao, Synthesis and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]0.96Ti0.04O1.96F0.04 as cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2008. 456(1-2): p. 344-347.
87.F. Zhou, X. Zhao, Z. Lu, J. Jiang, and J.R. Dahn, The effect of Al substitution on the reactivity of delithiated LiNi1/3Mn1/3Co(1/3−z)AlzO2 with non-aqueous electrolyte. Electrochemistry Communications, 2008. 10(8): p. 1168-1171.
88.L. Liu, K. Sun, N. Zhang, and T. Yang, Improvement of high-voltage cycling behavior of Li(Ni1/3Co1/3Mn1/3)O2 cathodes by Mg, Cr, and Al substitution. Journal of Solid State Electrochemistry, 2009. 13(9): p. 1381-1386.
89.M.D.J.D. Pillay, The effect of Al substitution in LiNi0.33Co0.33Mn0.33O2 cathode materials. ECS Trans., 2009.
90.J. Wilcox, S.b. Patoux, and M. Doeff, Structure and Electrochemistry of LiNi[sub 1∕3]Co[sub 1∕3−y]M[sub y]Mn[sub 1∕3]O[sub 2] (M=Ti, Al, Fe) Positive Electrode Materials. Journal of The Electrochemical Society, 2009. 156(3): p. A192.
91.J.D. Wilcox, E.E. Rodriguez, and M.M. Doeff, The Impact of Aluminum and Iron Substitution on the Structure and Electrochemistry of Li(Ni[sub 0.4]Co[sub 0.2−y]M[sub y]Mn[sub 0.4])O[sub 2] Materials. Journal of The Electrochemical Society, 2009. 156(12): p. A1011.
92.F. Zhou, X. Zhao, and J.R. Dahn, Synthesis, Electrochemical Properties, and Thermal Stability of Al-Doped LiNi[sub 1∕3]Mn[sub 1∕3]Co[sub (1∕3−z)]Al[sub z]O[sub 2] Positive Electrode Materials. Journal of The Electrochemical Society, 2009. 156(4): p. A343.
93.N.K. Dhar, M.M. Doeff, P.S. Wijewarnasuriya, T. Conry, J. Wilcox, and A.K. Dutta, Improved layered mixed transition metal oxides for Li-ion batteries. 2010. 7683: p. 768309.
94.W. Luo, X. Li, and J.R. Dahn, Synthesis, Characterization, and Thermal Stability of Li[Ni1/3Mn1/3Co1/3−z(MnMg)z/2]O2. Chemistry of Materials, 2010. 22(17): p. 5065-5073.
95.W. Luo, F. Zhou, X. Zhao, Z. Lu, X. Li, and J.R. Dahn, Synthesis, Characterization, and Thermal Stability of LiNi1/3Mn1/3Co1/3−zMgzO2, LiNi1/3−zMn1/3Co1/3MgzO2, and LiNi1/3Mn1/3−zCo1/3MgzO2†. Chemistry of Materials, 2010. 22(3): p. 1164-1172.
96.M. Wang, Y. Chen, F. Wu, Y. Su, L. Chen, and D. Wang, Characterization of yttrium substituted LiNi0.33Mn0.33Co0.33O2 cathode material for lithium secondary cells. Electrochimica Acta, 2010. 55(28): p. 8815-8820.
97.J. Xiao, N.A. Chernova, and M.S. Whittingham, Influence of Manganese Content on the Performance of LiNi0.9−yMnyCo0.1O2(0.45 ≤y≤ 0.60) as a Cathode Material for Li-Ion Batteries†. Chemistry of Materials, 2010. 22(3): p. 1180-1185.
98.L. Croguennec, J. Bains, J. Bréger, C. Tessier, P. Biensan, S. Levasseur, and C. Delmas, Effect of Aluminum Substitution on the Structure, Electrochemical Performance and Thermal Stability of Li1+x(Ni0.40Mn0.40Co0.20−zAlz)1−xO2. Journal of The Electrochemical Society, 2011. 158(6): p. A664.
99.K.C. Kam and M.M. Doeff, Aliovalent titanium substitution in layered mixed Li Ni–Mn–Co oxides for lithium battery applications. Journal of Materials Chemistry, 2011. 21(27): p. 9991.
100.W. Luo and J.R. Dahn, The Impact of Zr Substitution on the Structure, Electrochemical Performance and Thermal Stability of Li[Ni1/3Mn1/3−zCo1/3Zrz]O2. Journal of The Electrochemical Society, 2011. 158(4): p. A428.
101.H. Ren, X. Li, and Z. Peng, Electrochemical properties of Li[Ni1/3Mn1/3Al1/3−xCox]O2 as a cathode material for lithium ion battery. Electrochimica Acta, 2011. 56(20): p. 7088-7091.
102.L.B.e. al, Improved Electrochemical Stability of Zn-Doped LiNi1/3 Co1/3Mn1/3O2 Cathode Materials. Acta Phys. -Chim Sin., 2012. 28(8): p. 1899-1905.
103.T.E. Conry, A. Mehta, J. Cabana, and M.M. Doeff, Structural Underpinnings of the Enhanced Cycling Stability upon Al-Substitution in LiNi0.45Mn0.45Co0.1–yAlyO2Positive Electrode Materials for Li-ion Batteries. Chemistry of Materials, 2012. 24(17): p. 3307-3317.
104.K.C. Kam, A. Mehta, J.T. Heron, and M.M. Doeff, Electrochemical and Physical Properties of Ti-Substituted Layered Nickel Manganese Cobalt Oxide (NMC) Cathode Materials. Journal of The Electrochemical Society, 2012. 159(8): p. A1383-A1392.
105.Y. Zhang, S. Xia, Y. Zhang, P. Dong, Y. Yan, and R. Yang, Ce-doped LiNi1/3Co(1/3−x/3)Mn1/3Ce x/3O2 cathode materials for use in lithium ion batteries. Chinese Science Bulletin, 2012. 57(32): p. 4181-4187.
106.Z. Chen, T. Xie, L. Li, M. Xu, H. Zhu, and W. Wang, Characterization of Na-substituted LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion battery. Ionics, 2014. 20(5): p. 629-634.
107.W. Hua, J. Zhang, Z. Zheng, W. Liu, X. Peng, X.D. Guo, B. Zhong, Y.J. Wang, and X. Wang, Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries. Dalton Trans, 2014. 43(39): p. 14824-14832.
108.I.M. Markus, F. Lin, K.C. Kam, M. Asta, and M.M. Doeff, Computational and Experimental Investigation of Ti Substitution in Li1(NixMnxCo1-2x-yTiy)O2 for Lithium Ion Batteries. J Phys Chem Lett, 2014. 5(21): p. 3649-3655.
109.H. Zhu, T. Xie, Z. Chen, L. Li, M. Xu, W. Wang, Y. Lai, and J. Li, The impact of vanadium substitution on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2. Electrochimica Acta, 2014. 135: p. 77-85.
110.D. Aurbach, O. Srur-Lavi, C. Ghanty, M. Dixit, O. Haik, M. Talianker, Y. Grinblat, N. Leifer, R. Lavi, D.T. Major, G. Goobes, E. Zinigrad, E.M. Erickson, M. Kosa, B. Markovsky, J. Lampert, A. Volkov, J.Y. Shin, and A. Garsuch, Studies of Aluminum-Doped LiNi0.5Co0.2Mn0.3O2: Electrochemical Behavior, Aging, Structural Transformations, and Thermal Characteristics. Journal of The Electrochemical Society, 2015. 162(6): p. A1014-A1027.
111.Q. Chang, H. Zhang, X. Wang, W. Shao, H. Li, F. Yuan, X. Xu, and S. Xu, Structure and electrochemical performance of hollow microspheres of LiFexNi1/3−xCo1/3Mn1/3O2(0.000 ≤ x ≤ 0.267) as cathodes for lithium-ion batteries. RSC Adv., 2015. 5(69): p. 56274-56278.
112.Q. Chen, C. Du, D. Qu, X. Zhang, and Z. Tang, Synthesis and characterization of Zr-doped LiNi0.4Co0.2Mn0.4O2cathode materials for lithium ion batteries. RSC Adv., 2015. 5(92): p. 75248-75253.
113.H. Du, Y. Zheng, Z. Dou, and H. Zhan, Zn-Doped LiNi1/3Co1/3Mn1/3O2Composite as Cathode Material for Lithium Ion Battery: Preparation, Characterization, and Electrochemical Properties. Journal of Nanomaterials, 2015. 2015: p. 1-5.
114.Z. Huang, Z. Wang, X. Zheng, H. Guo, X. Li, Q. Jing, and Z. Yang, Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochimica Acta, 2015. 182: p. 795-802.
115.G. Li, Z. Huang, Z. Zuo, Z. Zhang, and H. Zhou, Understanding the trace Ti surface doping on promoting the low temperature performance of LiNi1/3Co1/3Mn1/3O2 cathode. Journal of Power Sources, 2015. 281: p. 69-76.
116.Q. Sa, J.A. Heelan, Y. Lu, D. Apelian, and Y. Wang, Copper Impurity Effects on LiNi(1/3)Mn(1/3)Co(1/3)O2 Cathode Material. ACS Appl Mater Interfaces, 2015. 7(37): p. 20585-20590.
117.J. Wu, H. Liu, X. Ye, J. Xia, Y. Lu, C. Lin, and X. Yu, Effect of Nb doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 at high cutoff voltage for lithium-ion battery. Journal of Alloys and Compounds, 2015. 644: p. 223-227.
118.Y. Zhang, Z.-B. Wang, J. Lei, F.-F. Li, J. Wu, X.-G. Zhang, F.-D. Yu, and K. Ke, Investigation on performance of Li(Ni0.5Co0.2Mn0.3)1−xTixO2 cathode materials for lithium-ion battery. Ceramics International, 2015. 41(7): p. 9069-9077.
119.L.W. Zhengyao Hu, Yanzhu Luo, Qiulong Wei, Mengyu Yan, Liang Zhou and Liqiang Mai, Vanadium-doped LiNi1/3Co1/3Mn1/3O2 with decreased lithium/nickel disorder as high-rate and long-life lithium ion battery cathode. Sci. Adv. Today, 2015. 1: p. 25218.
120.W. Hua, Z. Zheng, X. Guo, and B. Zhong, Microstructure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3-xAlxO2 Cathode Material for Lithium Ion Batteries. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 2016. 10(2).
121.Z. Huang, Z. Wang, H. Guo, and X. Li, Influence of Mg2+ doping on the structure and electrochemical performances of layered LiNi0.6Co0.2-xMn0.2MgxO2 cathode materials. Journal of Alloys and Compounds, 2016. 671: p. 479-485.
122.M. Lu, E. Han, L. Zhu, S. Chen, and G. Zhang, The effects of Ti4+-Fe3+ co-doping on Li[Ni1/3Co1/3Mn1/3]O2. Solid State Ionics, 2016. 298: p. 9-14.
123.F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E.M. Erickson, C. Ghanty, D.T. Major, B. Markovsky, and D. Aurbach, Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J. Mater. Chem. A, 2016. 4(41): p. 16073-16084.
124.D. Wang, X. Li, Z. Wang, H. Guo, Y. Xu, Y. Fan, and J. Ru, Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochimica Acta, 2016. 188: p. 48-56.
125.Z. Yang, W. Hua, J. Zhang, J. Chen, F. He, B. Zhong, and X. Guo, Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping. Acta Phys. -Chim. Sin., 2016. 32(5): p. 1056-1061.
126.Z. Yang, X. Guo, W. Xiang, W. Hua, J. Zhang, F. He, K. Wang, Y. Xiao, and B. Zhong, K-doped layered LiNi0.5Co0.2Mn0.3O2 cathode material: Towards the superior rate capability and cycling performance. Journal of Alloys and Compounds, 2017. 699: p. 358-365.
127.G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, and B. Huang, Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature, 1998. 392(6677): p. 694-696.
128.A. Jain, Y. Shin, and K.A. Persson, Computational predictions of energy materials using density functional theory. Nature Reviews Materials, 2016. 1(1): p. 15004.
129.A. Urban, D.-H. Seo, and G. Ceder, Computational understanding of Li-ion batteries. npj Computational Materials, 2016. 2: p. 16002.
130.L.u.r. Benco, J.-L. Barras, M. Atanasov, C.A. Daul, and E. Deiss, First-principles prediction of voltages of lithiated oxides for lithium-ion batteries. Solid State Ionics, 1998. 112(3): p. 255-259.
131.G. Ceder, Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Physical Review B, 1997.
132.Y. Hinuma, Y.S. Meng, K. Kang, and G. Ceder, Phase Transitions in the LiNi0.5Mn0.5O2 System with Temperature. Chemistry of Materials, 2007. 19(7): p. 1790-1800.
133.J. Reed and G. Ceder, Charge, Potential, and Phase Stability of Layered Li(Ni[sub 0.5]Mn[sub 0.5])O[sub 2]. Electrochemical and Solid-State Letters, 2002. 5(7): p. A145.
134.G. Ceder, Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. SCIENCE, 2006.
135.K. Min, S.W. Seo, Y.Y. Song, H.S. Lee, and E. Cho, A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. Phys Chem Chem Phys, 2017. 19(3): p. 1762-1769.
136.C.G. Van de Walle, First-principles calculations for defects and impurities: Applications to III-nitrides. Journal of Applied Physics, 2004. 95(8): p. 3851.
137.P. Erhart and K. Albe, Dopants and dopant–vacancy complexes in tetragonal lead titanate: A systematic first principles study. Computational Materials Science, 2015. 103: p. 224-230.
138.H. Duan, J. Li, H. Du, S.W. Chiang, C. Xu, W. Duan, and F. Kang, Tailoring Native Defects and Zinc Impurities in Li4Ti5O12: Insights from First-Principles Study. The Journal of Physical Chemistry C, 2015. 119(9): p. 5238-5245.
139.G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50.
140.G. Kresse, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996.
141.K. Momma and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008. 41(3): p. 653-658.
142.E. Schrödinger, An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review, 1926. 28(6): p. 1049-1070.
143.P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
144.W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
145.J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 1981. 23(10): p. 5048-5079.
146.M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097.
147.D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990. 41(11): p. 7892-7895.
148.P.E. Blöchl, Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953-17979.
149.A.I. Liechtenstein, V.I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Physical Review B, 1995. 52(8): p. R5467-R5470.
150.S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B, 1998. 57(3): p. 1505-1509.
151.F. Zhou, M. Cococcioni, C.A. Marianetti, D. Morgan, and G. Ceder, First-principles prediction of redox potentials in transition-metal compounds withLDA+U. Physical Review B, 2004. 70(23).
152.A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 2013. 1(1): p. 011002.
153.R.F.W. Bader, Atoms in Molecules: A Quantum Theory. 1990, Oxford University Press: Oxford.
154.F. De Proft, C. Van Alsenoy, A. Peeters, W. Langenaeker, and P. Geerlings, Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density. J Comput Chem, 2002. 23(12): p. 1198-1209.
155.R.F.W. Bader, A quantum theory of molecular structure and its applications. Chemical Reviews, 1991. 91(5): p. 893-928.
156.G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006. 36(3): p. 354-360.
157.H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Physical Review B, 1976. 13(12): p. 5188-5192.
158.M.S. Park, First-principles study of native point defects in LiNi(1/3)Co(1/3)Mn(1/3)O2 and Li2MnO3. Phys Chem Chem Phys, 2014. 16(31): p. 16798-16804.
159.Y.W.T. B. J. Hwang, D. Carlier, and G. Ceder, A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2. Chem. Mater., 2003(15): p. 3676-3682.
160.A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer, K.A. Persson, and G. Ceder, Formation enthalpies by mixing GGA and GGA+Ucalculations. Physical Review B, 2011. 84(4).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw