進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2507201713173400
論文名稱(中文) 間隔環、牙型係數與軌道表面粗糙度設計對於環狀式類滾珠軸承傳動磨潤行為之研究
論文名稱(英文) Study on the Design Effects of Spacer, Groove Factor and Surface Roughness of Two Raceways in the Ball-Bearing-Like Specimens on the Tribological Behavior of Grease Lubrication
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 郭柏均
研究生(英文) Po-Chun Kuo
學號 N16044276
學位類別 碩士
語文別 中文
論文頁數 153頁
口試委員 指導教授-林仁輝
口試委員-邱源成
口試委員-朱孝業
口試委員-黃逸群
中文關鍵字 環形試件  牙型係數  表面粗糙度  間隔環  間隔環間隙 
英文關鍵字 ball-bearing-like  groove factor  surface roughness  spacer  gap between ball and spacer 
學科別分類
中文摘要 本研究中為模擬實際滾珠螺桿之運動行為,製作環形類滾珠軸承試件且具有兩種不同牙型係數(Groove factor)之設計,除了滾珠直徑相同,試件尺寸,內、外環粗糙度,滾珠數量,間隔環數量及厚度均稍有不同。利用理論分析運用在試驗機之軸向負載及轉速設定,使各牙型係數最大接觸應力接近2.0GPa,以進行不同牙型係數、表面粗糙度及間隔環與滾珠間隙對磨潤行為之影響。本研究之主要目的為,使用簡單且有效率之方法以研究類滾珠軸承之運動及磨潤行為。此研究與以往最大不同的地方是使用研究室所建立之三維幾何模型,配合實驗機台所量測之參數,代入基因演算法(Genetic algorithms)而解得許多以往不易計算之軸承重要參數,例如滾珠與內、外環之摩擦係數及滾珠與間隔環之正向力。
實驗中,發現擷取之摩擦扭矩、溫度、荷重訊號及滑動比產生振盪現象為軸承各種條件配置所致,此現象之控制因子為牙型係數、內環軌道表面粗糙度、有或無間隔環及間隔環與滾珠之間隙。滾珠公轉角速度,ω_br,直接受到牙型係數和間隙之影響,也因此造成起動及運轉一段時間後之摩擦扭矩穩定性。在0.52之牙型係數,間隙減少會造成ω_br之下降,但在0.54之牙型係數,間隙減少會造成ω_br之上升,實際之ω_br值在運轉一段長時間後如果仍小於ω_br之理論值,則扭矩之不穩定性容易發生。有及無間隔環與荷重穩定性有所關聯,在0.52牙型係數中特別顯著,能使滾珠公轉方向受力平均;牙型係數控制平均摩擦係數、滑動比及溫升,因為牙型係數會改變滾珠與軌道之配合度,而影響上述性質;內外環粗糙度影響溫升及滑動比,於0.52牙型係數中,由於滾珠與軌道之配合度較高,粗糙度性質影響也較大。當內環粗糙度較低時,滑動比會上升,而將內、外環之粗度提升,滑動現象則明顯下降;間隔環間隙為滑動比大小與滾珠運動順暢度之主因,0.52牙型係數中,於間隙0.27mm下扭矩產生跳動,為滾珠轉動不順暢所致。
研究顯示,0.54牙型係數有較好溫升、扭矩及滑動比之表現,且滾珠與軌道之配合度較小,受軌道表面粗度影響較小。配合較小粗糙度之內、外環配對有提升潤滑性能之現象。而0.54牙型係數之試件加入間隔環大部分皆能增加摩擦係數及滑動比,只有間隔環間隙0.86mm之試件相較於無間隔環試件有較佳之磨潤性能。
英文摘要 In this study, in order to simulate the behavior of the ball screw, the ball-bearing-like specimen is designed with two different groove factors. In addition to the same ball diameter, specimen size, inner and outer ring roughness, the number of balls, the number and thickness of the spacer are slightly different. The maximum contact stress of each groove factors coefficient is close to 2.0GPa by using the theoretical analysis. The main purpose of this study is to use an efficient method to study the ball bearing movement and tribological behavior. The most different in the study is using the three-dimensional geometric model with the measured parameters. Using the genetic algorithms and solve the parameters.
In the experiment, it is found that the frictional torque, temperature, load and slip ratio are caused by the configuration of various bearing conditions. The control factors of the specimens are groove factor, surface roughness, and the gap between the ring and the ball.
The results show that the groove factor 0.54 has a lower temperature rise, torque and sliding ratio, and the ball and the ring with the smaller degree of the interference by the surface roughness. With a small roughness within the outer ring matching to enhance the performance of the phenomenon of lubrication. While the groove factor 0.54 of the specimen to join the majority of the spacer to increase the friction coefficient and sliding ratio, only the gap 0.86mm of the specimen compared to the no-spacer specimen have better wear performance
論文目次 內容
摘要 I
Extended Abstract III
致謝 VII
目錄 VIII
表目錄 XII
圖目錄 XIII
符號說明 XXIII
1 第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機 7
1-4 論文架構 10
2 第二章 基本原理 12
2-1 環狀式類滾珠軸承之運動學分析 12
2-1-1 滾珠與軌道面之牙型係數 13
2-1-2 平面環狀式類滾珠軸承 14
2-1-3 幾何分析與初始接觸角 16
2-1-4 變形分析與負荷因子 18
2-1-5 曲率差及曲率和 19
2-1-6 滾珠軸承數學模型分析 23
2-2 環狀式類滾珠軸承之接觸滑動分析 26
2-2-1 滾珠自旋、公轉角速度 26
2-2-2 滑動速度之推導 28
2-2-3 滑動比 29
2-3 滾珠與間隔環之接觸力分析 31
2-3-1 滾珠與間隔環間之正向力 31
2-3-2 滾珠與間隔環間之正向力化簡 35
2-4 演化式演算法(Evolutionary Algorithms) 36
2-4-1 基因演算法 37
2-4-2 初始機制 38
2-4-3 基因演算法應用於滾珠與間隔環間之摩擦係數與正向力 42
3 第三章 試件製作及實驗方法 54
3-1 實驗目的 54
3-2 試件設計及製作 55
3-3 實驗機台 58
3-4 量測儀器 59
3-4-1 閃頻儀(Stroboscope) 59
3-4-2 訊號感測器 60
3-4-3 三維表面輪廓儀 62
3-5 實驗規劃與步驟 62
3-5-1 熱電偶量測位置 62
3-5-2 前置作業 63
3-5-3 實驗步驟 65
4 第四章 結果與討論 81
4-1 各牙型係數有及無間隔環之討論 82
4-1-1 正向力之探討 84
4-1-2 熱電偶擷取溫度之比較 84
4-1-3 摩擦扭矩之討論 86
4-1-4 滑動比之探討 86
4-2 內外環表面粗糙度與牙型係數對摩擦係數之影響 88
4-2-1 表面粗糙度與牙型係數對摩擦扭矩之影響 89
4-2-2 表面粗糙度與牙型係數對溫升行為之影響 90
4-2-3 表面粗糙度與牙型係數對滑動比之影響 91
4-2-4 表面粗糙度與牙型係數對間隔環正向力及內外環摩擦係數之影響 93
4-3 各牙型係數不同間隔環間隙之探討 95
4-3-1 間隔環間隙對摩擦扭矩之討論 96
4-3-2 間隔環間隙對溫升之討論 97
4-3-3 間隔環間隙對滑動比之討論 98
4-3-4 間隔環間隙對間隔環正向力與內外環摩擦係數之討論 100
4-4 潤滑條件下不同牙型係數試件之磨潤性能比較 101
4-4-1 各試件扭矩之熱不穩定現象 102
4-4-2 各試件與基本性質之比較 102
4-4-3 內外環粗糙度與基本性質之比較 104
4-4-4 滑動比對溫升與摩擦係數之比較 104
5 第五章 結論與未來展望 144
5-1 結論 144
5-2 未來展望 146
參考文獻 148
參考文獻 [1] T. A. Harris, "An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings," Journal of Lubrication Technology, vol. 93, no. 1, pp. 17-23, 1971.
[2] T. A. Harris, Rolling bearing analysis. John Wiley and sons, 2008.
[3] B. Ravani and S. Velinsky, "Kinematics of the ball screw mechanism," Journal of mechanical design, vol. 116, pp. 849-855, 1994.
[4] M. C. Lin, S. A. Velinsky, and B. Ravani, "Design of the Ball Screw Mechanism for Optimal Efficiency," Journal of Mechanical Design, vol. 116, no. 3, pp. 856-861, 1994.
[5] J. F. Lin, "Kinematic analysis of the ball screw mechanism considering variable contact angles and elastic deformations," ASME Journal of Mechanical Design, vol. 125, pp. 717-733, 2003.
[6] C.-C. Wei and R.-S. Lai, "Kinematical analyses and transmission efficiency of a preloaded ball screw operating at high rotational speeds," Mechanism and machine theory, vol. 46, no. 7, pp. 880-898, 2011.
[7] A. Jones, "A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions," ASME J. Basic Eng, vol. 82, no. 21, pp. 309-320, 1960.
[8] J. F. Lin, "A new method for the analysis of deformation and load in a ball bearing with variable contact angle," Journal of Mechanical Design, vol. 123, no. 123, pp. 304-312, 2001.
[9] N. T. Liao and J. F. Lin, "Ball bearing skidding under radial and axial loads," Mechanism and Machine Theory, vol. 37, no. 1, pp. 91-113, 2002.
[10] F. Hirano, "Motion of a ball in angular-contact ball bearing," Asle Transactions, vol. 8, no. 4, pp. 425-434, 1965.
[11] A. Nakajima and T. Mawatari, "Dynamic behaviour of ball motion and its effect on oil film formation in ball screw," Tribology Series, vol. 43, pp. 449-457, 2003.
[12] E. Beghini, R. Dwyer-Joyce, E. Ioannides, and B. Jacobson, "Elastic/plastic contact and endurance life prediction," Journal of Physics D: Applied Physics, vol. 25, no. 3, pp. 379-383, 1992.
[13] R. Dwyer-Joyce and J. Heymcr, "The entrainment of solid particles into rolling elastohydrodynamic contacts," Tribology Series, vol. 31, pp. 135-140, 1996.
[14] D. Moyer and W. Needelman, "Effects of ultra-clean and centrifugal filtration on rolling-element bearing life," Journal of Lubrication Technology ,July, vol. 104, pp. 283-291, 1982.
[15] R. Sayles and P. Macpherson, "Influence of wear debris on rolling contact fatigue," in Rolling Contact Fatigue Testing of Bearing Steels: ASTM International, 1982.
[16] T. Tallian, "Prediction of rolling contact fatigue life in contaminated lubricant: Part II—Experimental," ASME J. Lubr. Technol, vol. 98, no. 3, pp. 384-392, 1976.
[17] M. Webster, E. Ioannides, and R. Saules, "The effect of topographical defects on the contact stress and fatigue life in rolling element bearings," Mechanisms and Surface Distress. Global Studies of Mechanisms and Local Analyses of Surface Distress Phenomena, pp. 207-221, 1985.
[18] R. Dwyer-Joyce, "Predicting the abrasive wear of ball bearings by lubricant debris," Wear, vol. 233, pp. 692-701, 1999.
[19] M. Maru, R. Castillo, and L. Padovese, "Study of solid contamination in ball bearings through vibration and wear analyses," Tribology International, vol. 40, no. 3, pp. 433-440, 2007.
[20] A. Torrance, J. Morgan, and G. Wan, "An additive's influence on the pitting and wear of ball bearing steel," Wear, vol. 192, no. 1-2, pp. 66-73, 1996.
[21] J. Walowit and C. Allen, "A theory of lubrication by micro-irregularities," ASME J. Basic Eng, vol. 88, no. 3, pp. 177-185, 1966.
[22] I. Etsion and L. Burstein, "A model for mechanical seals with regular microsurface structure," Tribology Transactions, vol. 39, no. 3, pp. 677-683, 1996.
[23] I. Etsion, Y. Kligerman, and G. Halperin, "Analytical and experimental investigation of laser-textured mechanical seal faces," Tribology Transactions, vol. 42, no. 3, pp. 511-516, 1999.
[24] V. Brizmer, Y. Kligerman, and I. Etsion, "A laser surface textured parallel thrust bearing," Tribology Transactions, vol. 46, no. 3, pp. 397-403, 2003.
[25] I. Etsion, Y. Kligerman, and A. Shinkarenko, "Improving Tribological Performance on Piston Rings by Partial Surface Texturing," Transactions of the ASME-F-Journal of Tribology, vol. 123, pp. 632-638, 2005.
[26] A. Ronen, I. Etsion, and Y. Kligerman, "Friction-reducing surface-texturing in reciprocating automotive components," Tribology Transactions, vol. 44, no. 3, pp. 359-366, 2001.
[27] X. Ai and H. S. Cheng, "The effects of surface texture on EHL point contacts," Transactions of the ASME-F-Journal of Tribology, vol. 118, pp. 59-66, 1996.
[28] Q. J. Wang and D. Zhu, "Virtual texturing: modeling the performance of lubricated contacts of engineered surfaces," Journal of Tribology, vol. 127, no. 4, pp. 722-728, 2005.
[29] A. de Kraker, R. A. van Ostayen, A. Van Beek, and D. J. Rixen, "A multiscale method modeling surface texture effects," Transactions of the ASME-F-Journal of Tribology, vol. 129, no. 2, pp. 221-230, 2007.
[30] M. Dobrica and M. Fillon, "About the validity of Reynolds equation and inertia effects in textured sliders of infinite width," Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 223, no. 1, pp. 69-78, 2009.
[31] J. Han, L. Fang, J. Sun, Y. Wang, S. Ge, and H. Zhu, "Hydrodynamic lubrication of surfaces with asymmetric microdimple," Tribology Transactions, vol. 54, no. 4, pp. 607-615, 2011.
[32] J. Li and H. Chen, "Evaluation on applicability of Reynolds equation for squared transverse roughness compared to CFD," Journal of Tribology, vol. 129, no. 4, pp. 963-967, 2007.
[33] N. Roucou, M. Helene, and J. Frene, "Theoretical analysis of the incompressible laminar flow in a macro-roughness cell," Journal of Tribology, vol. 125, no. 2, pp. 309-318, 2003.
[34] F. Sahlin, S. B. Glavatskih, T. Almqvist, and R. Larsson, "Two-dimensional CFD-analysis of micro-patterned surfaces in hydrodynamic lubrication," Transactions of the ASME-F-Journal of Tribology, vol. 127, no. 1, pp. 96-102, 2005.
[35] A. Ramesh, W. Akram, S. P. Mishra, A. H. Cannon, A. A. Polycarpou, and W. P. King, "Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication," Tribology International, vol. 57, pp. 170-176, 2013.
[36] 黃仲宏, 機械產業年鑑. 2014.
[37] H. T. Corp., Ballscrews Technical Information. 2015.
[38] N.-T. Liao and J. F. Lin, "Rolling-sliding analysis in ball bearing considering thermal effect," Tribology Transactions, vol. 49, no. 1, pp. 1-16, 2006.
[39] A. Jones, "Ball motion and sliding friction in ball bearings," Journal of Basic Engineering, vol. 81, no. 1, pp. 1-12, 1959.
[40] N. T. Liao, "Analyses of Mechanisms and Fatigue Life in a High-Speed Ball Bearing," Doctor of Phiosophy, National Cheng Kung University, 2002.
[41] M. Quillien, R. Gras, L. Collongeat, and T. Kachler, "A testing device for rolling–sliding behavior in harsh environments: the twin-disk cryotribometer," Tribology international, vol. 34, no. 4, pp. 287-292, 2001.
[42] W.-Y. Wang, I.-H. Li, M.-C. Chen, S.-F. Su, and S.-B. Hsu, "Dynamic slip-ratio estimation and control of antilock braking systems using an observer-based direct adaptive fuzzy–neural controller," IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1746-1756, 2009.
[43] J. H. Holland, "Adaptation in Natural and Artificial Systems," University of Michigan Press, 1975.
[44] J. Arora, Introduction to optimum design. Academic Press, 2004.
[45] 方紹宇, "應用基因演算法於運動系統之前饋摩擦力補償," 臺北科技大學自動化科技研究所學位論文, pp. 1-53, 2005.
[46] J. F. Liu, X. A. Chen, H. M. Kang, Z. Peng, and H. Ye, "Analysis on thermal properties of grease-lubricated ball bearing," Mechanical Science and Technology for Aerospace Engineering, vol. 33, no. 6, pp. 6-9, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw