進階搜尋


下載電子全文  
系統識別號 U0026-2507201700423100
論文名稱(中文) 非接觸式條帶狀感應供電軌道之具雙槽口型電能拾取器結構
論文名稱(英文) Dual-Slot Power-Pickup Structure for Contactless Strip Inductive Power Transfer Track
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 陳奕霖
研究生(英文) I-Lin Chen
學號 N26044278
學位類別 碩士
語文別 英文
論文頁數 79頁
口試委員 召集委員-林法正
口試委員-莫清賢
口試委員-陳建富
指導教授-李嘉猷
中文關鍵字 非接觸式電能傳輸  感應耦合結構  雙槽口型電能拾取器  條帶狀感應供電軌道 
英文關鍵字 Contactless power transmission  Inductively coupled structure  Dual-slot type power pickup  Strip type inductive power track 
學科別分類
中文摘要 本文旨在針對自動化工廠生產線搬運用電動載具之感應供電軌道系統,研製適於新型條帶狀感應供電軌道作非接觸式電能傳輸之雙槽口型拾取器結構。文中先就所提具高磁通密度與磁場均勻度特點之新型條帶狀感應供電軌道,應用有限元素電磁軟體分析模擬條帶狀軌道面磁通分佈,據之選定條帶狀半圈交疊式軌道繞製佈局。進而藉由等效磁路模型分析,設計具高磁交鏈特性之雙槽口型電能拾取器結構,俾以有效提升條帶狀感應供電軌道系統耦合結構之電能傳輸能力與傳輸效率。嗣為驗證所提條帶狀感應供電軌道系統之非接觸式傳輸特性,並建構結合SPLSC型全橋式複合諧振電路與調頻用微處理器控制單元之長1.2 m條帶狀感應供應軌道。最後經由實驗量測,整體軌道系統之最大輸出功率為775 W,於輸出功率289.52 W時可得系統最高傳輸效率72.52%。
英文摘要 The contactless inductive power transmission technique has received considerable attention in recent years. However, the efficiency of contactless inductive power system has not reached an optimal level because most of power is wasted in the air. The research aims to develop a dual-slot type power pickup suitable for the inductive power track for contactless power transmission. This technology will make a more effective transmission of power for automated production line system. The study consists of three phase. The initial phase tested the winding of strip type inductive power track where the magnetic flux density is more stable and stronger. The next phase involved testing of the newly-developed inductively coupled structure experimentally in magnetic field simulation and magnetic equivalent circuit model. The final phase was to verify the contactless transmission characteristics of a proposed strip type inductive power track system and to construct a combination, which was designed the whole system having SPLSC topology of a full bridge as compound resonant circuit and strip type inductive power track with 1.2 m long where frequency modulation is controlled by microcontroller unit. In accordance with the experimental results, the maximum output power of overall system reached 775 W with transfer efficiency of 64.58%, and the maximum transmission efficiency measured to 72.52% at an output power of 289.52 W. In other words, the efficiency of proposed system is higher than that of the current inductive power track system.
論文目次 摘要 I
Abstract II
Acknowledgements III
Contents IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1-1 Background and literature review 1
1-2 Motivation and purpose of thesis 3
1-3 Methodology 3
1-4 Organization of thesis 5
Chapter 2 Contactless Inductive Power Transmission Techniques 6
2-1 Electromagnetic theory 6
2-2 Non-ideal characteristics of current-carrying conductors 8
2-2-1 Skin effect 8
2-2-2 Proximity effect 10
2-3 Equivalent circuit model of inductively coupled structure 11
2-3-1 Analysis of loosely coupled circuit model 11
2-3-2 Measurement of coupling capability 13
Chapter 3 Power Track, Pickup and Resonant Circuits 15
3-1 Strip type inductive power track 15
3-2 Power pickup 20
3-2-1 Analysis of power pickup 20
3-2-2 Magnetic equivalent circuit modeling of power pickup 23
3-3 Resonant circuits 36
3-3-1 Resonant circuit of basic topologies 37
3-3-2 Analysis of compound resonant circuit at the primary side 40
3-3-3 Characteristics of resonant circuit 43
Chapter 4 Design of Contactless Inductive Power Track System 45
4-1 Framework of overall system 45
4-2 Primary side 47
4-3 Inductively coupled structure 49
4-3-1 Design of coupled structure 50
4-3-2 Implementation of coupled structure 51
4-3-3 Design of resonant topology 55
4-4 Secondary side 56
4-5 Design process for system 58
Chapter 5 Simulated and Experimental Results 60
5-1 System specifications 60
5-2 Simulated results 63
5-3 Experimental results 65
Chapter 6 Conclusions and Future Work 72
6-1 Conclusions 72
6-2 Recommendations for future work 73
References 74


參考文獻 [1]Schoneberger, “Primove contactless and catenary-free operation,” Bombardier Inc., 10832/SYS/09- 2010/en, Canada, 2010.
[2]Kamen, “Contactless Power System,” Vahle Corp., Germany, Nr. 9d/EN, Nov. 2008.
[3]“IPT charge for electric vehicles,” Conductix-Wampfler delachaux group, Germany, KAT9200-0001-E, 2009.
[4]“Corporate profile,” Daifuku Corp., Japan, CP13E, 2013.
[5]“非接觸供電,”AMIDOF Corp., Taiwan, NCPT, 2005.
[6]J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Mode-matching technique applied to three-dimensional magnetic field modeling,” IEEE Trans. Magn., vol. 48, no. 11, pp. 3383–3386, Nov. 2012.
[7]J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Comparison of position-independent contactless energy transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2059–2067, Apr. 2013.
[8]J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Modeling framework for contactless energy transfer systems for linear actuators,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 391–399, Jan. 2013.
[9]W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191–200, Jan. 2014.
[10]W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Analysis and comparison of secondary series- and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2979–2990, June 2014.
[11]W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “An optimized track length in roadway inductive power transfer systems,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 3, pp. 598–608, Sep. 2014.
[12]J. Hou, Q. Chen, X. Ren, X. Ruan, S. C. Wong, and C. K. Tse, “Precise characteristics analysis of series series-parallel compensated contactless resonant converter,” IEEE J. Emerg. Sel. Topics Power Electron., vol.3, no. 1, p. 101-110, May 2015.
[13]H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980–2993, June 2012.
[14]H. Matsumoto, Y. Neba, H. Iura, D. Tsutsumi, K. Ishizaka, and R. Itoh, “Trifoliate three-phase contactless power transformer in case of winding-alignment,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 53–62, Jan. 2014.
[15]J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666–3679, Dec. 2011.
[16]W. Y. Lee, J. Huh, S. Y. Choi, X. V. Thai, J. H. Kim, E. A. Al-Ammar, M. A. El-Kady, and C. T. Rim, “Finite-width magnetic mirror models of mono and dual coils for wireless electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1413–1428, Mar. 2013.
[17]S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, “New cross-segmented power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5832–5841, Dec. 2013.
[18]S. Y. Choi, S. W. Lee, E. S. Lee, S. Y. Jeong, B. W. Gu, C. T. Rim, “Self-decoupled dual pick-up coils with large lateral tolerance for roadway powered electric vehicles,” in Proc. IPEC, 2014, pp.1103–1108.
[19]C. Park, S. Lee, G. H. Cho, S. Y. Choi, and C. T. Rim, “Two-dimensional inductive power transfer system for mobile robots using evenly displaced multiple pickups,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 558–565, Jan. 2014.
[20]S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 18-36, Aug. 2014.
[21]S. Y. Choi, B. W. Gu, S. W. Lee, W. Y. Lee, J. Huh, and C. T. Rim, “Generalized active EMF cancel methods for wireless electric vehicles,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5770–5783, Nov. 2014.
[22]S. Y. Choi, J. Huh, W. Y. Lee, and C. T. Rim, “Asymmetric coil sets for wireless stationary EV chargers with large lateral tolerance by dominant field analysis,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6406–6420, Dec. 2014.
[23]C. Park, S. Lee, G. H. Cho, and C. T. Rim, “Innovative 5-m-off-distance inductive power transfer systems with optimally shaped dipole coils,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 817–827, Feb. 2015.
[24]S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 18–36, Mar. 2015.
[25]J. H. Kim, B. S. Lee, J. H. Lee, S. H. Lee, C. B. Park, S. M. Jung, S. G. Lee, K. P. Yi, and J. Baek, “Development of 1-MW inductive power transfer system for a high-speed train,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6242-6250, Oct. 2015.
[26]C. C. Mi, G. Buja, S. Y. Choi, and C. T. Rim, “Modern advances in wireless power transfer systems for roadway powered electric vehicles,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6533-6545, Oct. 2016.
[27]C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 995–1002, July 2004.
[28]G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, Oct. 2006.
[29]H. H. Wu, G. A. Covic, J. T. Boys, and D. J. Robertson, “A series-tuned inductive-power-transfer pickup with a controllable AC-voltage output,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 98–109, Jan. 2011.
[30]H. L. Li, A. P. Hu, and G. A. Covic, “A direct AC-AC converter for inductive power-transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 661–668, Feb. 2012.
[31]C. Liu, A. P. Hu, G. A. Covic, and N. K. C. Nair, “Comparative study of CCPT systems with two different inductor tuning positions,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 294–306, Jan. 2012.
[32]C. Y. Huang, J. T. Boys, and G. A. Covic, “LCL pickup circulating current controller for inductive power transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2081–2093, Apr. 2013.
[33]G. A. Covic and J. T. Boys, “Inductive power transfer,” in Proc. IEEE, vol. 101, no. 6, pp. 1276–1289, Jan. 2013.
[34]S. Raabe and G. A. Covic, “Practical design considerations for contactless power transfer quadrature pick-ups,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 400–409, Jan. 2013.
[35]H. Hao, G. A. Covic, and J. T. Boys, “A parallel topology for inductive power transfer power supplies,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1140–1151, Mar. 2014.
[36]H. Hao, G. A. Covic, and J. T. Boys, “An approximate dynamic model of LCL-T-Based
inductive power transfer power supplies,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5554–5567, Oct. 2014.
[37]J. E. James, D. J. Robertson, and G. A. Covic, “Improved AC pickups for IPT systems,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6361–6374, Dec. 2014.
[38]L. Chen, J. T. Boys, and G. A. Covic, “Power management for multiple-pickup IPT systems in materials handling applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 163-176, Mar. 2015.
[39]J. T. Boys and G. A. Covic, “The inductive power transfer story at the University of Auckland,” IEEE Circuits Syst. Mag., vol. 15, no. 2, pp. 6-27, May 2015
[40]F. F. A. van der Pijl, M. Castilla, and P. Bauer, “Adaptive sliding-mode control for a multiple-user inductive power transfer system without need for communication,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 271–279, Jan. 2013.
[41]S. Chopra and P. Bauer, “Driving range extension of EV with on-road contactless power transfer-a case study,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 329–338, Jan. 2013.
[42]F. F. A. van der Pijl, P. Bauer, and M. Castilla, “Control method for wireless inductive energy transfer systems with relatively large air gap,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 382–390, Jan. 2013.
[43]J. Y. Lee, H. Y. Shen, and K. C. Chan, “Design and implementation of removable and closed-shape dual ring pickup for contactless linear inductive power track system,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 4036–4046, Nov./Dec. 2014.
[44]J. Y. Lee, H. Y. Shen, and K. W. Lee, “Design and implementation of weaving-type pad for contactless EV inductive charging system,” IET Power Electron., vol. 7, iss. 10, pp. 2533-2542, 2014.
[45]J. Y. Lee, H. M. Chen, and L. Y. Huang, “Design of an improved type rotary inductive coupling structure for rotatable contactless power transfer system,” MATEC Web of Conferences, vol. 34, no. 06001, pp. 1-6, 2015.
[46]J. Y. Lee, H. Y. Shen, and K. C. Chan, “Design and implementation of contactless power track system with Y-shaped inductive pickup,” IET Power Electron., vol. 9, no. 3, pp. 536–545, Mar. 2016.
[47]J. Y. Lee, H. Y. Shen, and C. B. Li, “Three-phase inductive coupled structures for contactless PHEV charging system,” Int. J. Electron., vol. 103, no. 7, pp. 1083-1097, 2016.
[48]詹凱筌,具可拆卸機制封閉式耦合結構之非接觸式線型感應饋電軌道系統,國立成功大學電機工程學系碩士論文,2012年。
[49]張華敬,電動搬運載具用非接觸式三相線型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[50]張雅婷,電動搬運載具用非接觸式條帶型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2015年。
[51]楊昆翰,非接觸式片狀感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2014年。
[52]林采樺,具改良型感應耦合結構之非接觸式條帶狀供電軌道系統,國立成功大學電機工程學系碩士論文,2016年。
[53]Doug Giancoli, Physics for Scientists & Engineers with Modern Physics, 4th ed., USA, Pearson, 2013.
[54]PIC18F4520 Data Sheet, Microchip Technology Inc., 2004.
[55]IXFH26N50Q Data Sheet, IXYS Inc., 2004.
[56]TLP250 Data Sheet, Toshiba Inc., 2002.
[57]“PIC18F4520-I/P,” iCircuit Technologies [Online]. Available: http://www.piccircuit.com/shop/pic-microcontroller/177-pic18f4520.html, 2008.
[58]曾百由,微處理器原理與應用組合語言與PIC18微控制器,五南圖書出版公司,台灣,2009年。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw