進階搜尋


下載電子全文  
系統識別號 U0026-2507201700223300
論文名稱(中文) 綠能光電模組建築結構之防火性能研究
論文名稱(英文) Studies on the Fire Resistance of Building Integrated Photovoltaics
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 劉育良
研究生(英文) Yu-Liang Liou
學號 N16044022
學位類別 碩士
語文別 英文
論文頁數 129頁
口試委員 指導教授-林大惠
口試委員-蔡銘儒
口試委員-李訓谷
口試委員-陳俊貴
中文關鍵字 綠色建築  建材一體型太陽光電模組  延燒  防火安全  帷幕牆耐火試驗設備  太陽光電火災 
英文關鍵字 Green building  Building-integrated photovoltaics (BIPV)  Fire spread  Fire safety  Photovoltaic Fire 
學科別分類
中文摘要 目前的設計工法僅能讓太陽光電模組達到約30分鐘的建築物防火時效,因此更進一步的設計工法使其太陽光電模組具有半小時以上之防火時效則是必須要深入探討與研究。並研究外部延燒對太陽光電模組之影響進行探討與評估。
本研究以CNS 12514-1試驗方式進行太陽光電模組之遮焰及阻熱性能測試。太陽光電模組結合阻熱材料試驗中,採用三種多晶矽太陽光電模組防火設計及一種CIGS薄膜太陽光電模組防火設計,多晶矽太陽光電模組防火設計之背板分別為酚醛斷熱板、矽酸鈣板、石膏板作為曝火面,進行防火性能測試。由於太陽光電模組之曝火面電線孔形成一個防火缺陷,使太陽光電模組防火性能失效。CIGS薄膜太陽光電模組結合矽酸鈣板進行試驗,其研究結果顯示在試驗2小時的過程中沒有火焰竄出的現象,具有較佳遮焰性能,但阻熱性能仍失效。此外太陽光電模組結合水膜系統的部分,在調整水膜流量、厚度、覆蓋範圍後,於2小時試驗過程中,無火焰竄出的現象,使得太陽光電模組具有2小時遮焰與阻熱性能。
太陽光電模組在有水套與無水套的試驗結果可以發現,水套技術結合並應用在建築物上,則是能夠減少太陽光電模組受到日照與發電過程所產生的高溫傳入建築物的室內。
於太陽光電模組垂直立面延燒試驗中,當測試油盤引燃時,太陽光電模組受到火焰亮度與輻射的照射影響,進而使得輸出電壓與電流有急遽上升的現象發生,之後當火焰的高溫開始讓太陽光電模組的玻璃與玻璃夾層內的化合物產生碎裂與剝落,至試驗結束,太陽光電模組的輸出電壓與電流會分別降至為0 V與0 A。
由於太陽光電模組可能應用在帷幕牆構造上,也就必須依循帷幕牆耐火標準。由於國內必無相關試驗標準規範及設備。因此參考國際相關標準,分析比較後選出ASTM E2307-15b作為試驗標準參考,建置相關設備。在校正試驗後發現溫度曲線之誤差原因為在ATSM E2307-15b未直接指示燃料種類,但NFPA 285有說明使用天然氣,由於本試驗使用之燃料為液化石油氣(LPG)並非天然氣(NG);因兩者熱值有顯著差異,之後需要進行熱值換算,調整燃氣流量後再進行校正試驗。
英文摘要 At present, PV modules are fire-resistant for about 30 min. This study proposes the design of fire-resistant PV modules.
In this study, the fire and heat performance of PV modules is evaluated using the CNS 12514-1 testing method. In the test of PV module with insulation materials, there are 3 kinds of fire-resistant methods of polysilicon PV modules and a fire-resistant method of CIGS thin-film PV module. Polysilicon PV modules with a calcium silicate board (ITRI), a phenova insulation board (ITRI), a gypsum board(ITRI) as exposed surfaces, respectively, were tested. There were wire holes on the back board of the PV modules in the three designs. The holes degraded fire resistance. And in the fire-resistance test of CIGS thin-film PV module with a calcium silicate board as exposed surfaces. The result shows no flame sprung up in the 2 h of testing. Although the design had better integrity, the insulation of the PV module was failure. Moreover, CIGS thin-film PV module with water film was placed on the exposed surface in 2 h of testing. After adjusting the water film flow, thickness and coverage of system, there is no flame sprung up in the 2 h of testing. PV module with water film had 2 h of fire and heat resistance.
PV modules with and without a water jacket were tested. The effect of water circulation in the water jacket on the temperature change of the PV module was investigated. A PV module with a water jacket can reduce the heat of the PV module caused by sunshine and power generation of building.
In the full-scale heating furnace test, PV modules with an aluminum, calcium silicate, and gypsum boards, respectively were tested. Wire holes in the PV modules on the exposed surface allowed flames to pass through, degrading fire performance.
Before the PV module vertical fire spread test, the output voltage and current of the PV module were set to 3 V and 0 A, respectively. When the oil pan ignited, the PV module was affected by the brightness of the flame and the radiation, and the output voltage and current increased. The heat of the flame led to the glass and interlayer compounds in the PV module to break and peel, sharply reducing the output voltage and current. The output voltage and current of the PV module decreased to 0 V and 0 A, respectively.
For the fire spread test of the PV module used in curtain wall. We built the apparatus for testing the fire-resistant performance of the exterior curtain wall in ASTM E2307-15b which was selected in the national regulations to carry out the standard test for the exterior PV module curtain wall or other kinds of curtain wall. In the first-time calibration test, the error of temperature profile may be due to the fuel not being directly indicated in ATSM E2307-15b, but that of NFPA 285 being natural gas (NG). The fuel used for this test is LPG, not NG. Because the two heating values are significantly different, a conversion is needed, and the gas flow must be adjusted before next calibration test.
論文目次 LIST OF TABLES III
LIST OF FIGURES……………………………………………………………….….IV
1. INTRODUCTION………………………………………………………………..…1
1.1. General Background Information…………………………………………………1
1.2. Motivation and Objective…………………………………………………………1
1.3. Conceptual Framework…………………………………………………………...2
1.4. Research Method………………………………………………………………….3
1.4.1. Literature Review……………………………………………………………….3
1.4.2. Verification for Actual-Scale Test………………………………………………4
2. LITERATURE REVIEW…………………………………………………………...5
2.1. Energy Efficiency Evaluation and Design Method of Solar Photovoltaic Modules Combined with Buildings……………………………………………………………...5
2.2. Characteristics of Solar Photovoltaic Module in Fire…………………………...11
2.2.1. Experiment of Output Voltage Characteristics of Polycrystalline PV Modules in Different Light Source Illumination and Flame Test………………………………...17
2.2.2. Gas Produced by Burned PV Modules………………………………………..19
2.3. Design Method and Fire Resistance of BIPV…………………………………...20
2.4. Fire and Heat Resistance of BIPV………………………………………………24
2.5. Characteristics of Building Exterior Wall and Glass Curtain Wall……………...34
3. EXPERIMENTAL EQUIPMENT AND PROCEDURES………………………...40
3.1. Experimental Apparatus…………………………………………………………40
3.1.1. Small-Scale Heating Furnace………………………………………………….40
3.1.2. Full-Scale Heating Furnace……………………………………………………41
3.2. Experimental Procedures………………………………………………………...43
3.2.1. Fire Resistance Test of 3 Fire-resistant Methods for Polysilicon PV Modules (ITRI design)…………………………………………………………………………44
3.2.2. Fire Resistance Tests of CIGS Thin-film PV Module with Calcium Silicate Board…………………………………………………………………………………49
3.2.3. Fire Resistance Tests of CIGS Thin-film PV Module with Water Film System………………………………………………………………………………..51
3.2.4. Performance Test of PV Module with Water Jacket…………………………...53
3.2.5. PV Module Vertical Fire Spread Test………………………………………….57
3.2.6. Actual Apparatus for Fire Test of Curtain Wall and Bed Joint………………...58
4. RESEARCH RESULTS AND DISCUSSION…………………………………….59
4.1. Fire Resistance Test of PV Modules (ITRI design)……………………………...59
4.2. Fire Resistance Test of PV Module with Calcium Silicate Board……………….71
4.3. Fire Resistance Test of PV Module with Water Film System…………………...78
4.4. Performance Test of PV Module with Water Jacket……………………………..81
4.5. PV Module Vertical Fire Spread Test……………………………………………88
5. Fire Test of Curtain Wall and Bed Joint…………………………………………...94
5.1. Discussion on National Regulations for the Non-bearing External Wall for Fire Resistance…………………………………………………………………………….94
5.1.1. BS EN 1364-3 and BS EN 1364-4…………………………………………….94
5.1.2. ISO 13785-1 and ISO 13785-2………………………………………………...96
5.1.3. NFPA 285 and ASTM E2307………………………………………………….98
5.2. Actual Apparatus for Fire Test of Curtain Wall and Bed Joint…………………104
5.2.1. Building of ASTM E2307 Fire Test Apparatus………………………………104
5.2.2. Calibration Test of ASTM E2307 Fire Test Apparatus……………………….113
6. CONCLUSION…………………………………………………………………..121
7. REFERENCE………………………………………………………………….123
參考文獻 [1] Building Technical Regulations, “Construction and planning agency ministry of the interior,” R.O.C., 2015. [Text in Chinese]
[2] 陳瑞鈴,林大惠,李訓谷,王天志,蘇鴻奇,陳柏端,陳俊貴,秦鈺舜,《建築外殼太陽光電模組系統之防火安全評估》,內政部建築研究所協同研究報告,2014年。
[3] 蔡銘儒,《非承重外牆與層間縫隙耐火性能驗證基準之研究》,內政部建築研究所自行研究報告,2012年。
[4] 株式会社インターリスク総研,〈太陽光発電の事故リスク〉,災害リスク情報第60号,2014。
[5] Azadian, F., Radzi, M. A. M., “A general approach toward building integrated photo voltaic systems and its implementation barriers: A review,” Renew. Sust. Energ. Rev., Vol. 22, p. 527-538, 2013.
[6] Peng, C., Huang, Y., Wu, Z., “Building-integrated photovoltaics (BIPV) in architectural design in China. Energy and Buildings,” Vol. 43, p. 3592-3598, 2011.
[7] Jelle, B. P., Breivik, C., Røkenes, H. D., “Building integrated photovoltaic products: A state-of-the-art review and future research opportunities,” Sol. Energ. Mat. Sol. Cells, Vol. 100, p. 69-96, 2012.
[8] Radhi H., “Energy analysis of facade-integrated photovoltaic systems applied to UAE commercial buildings,” Solar Energy, Vol. 84, p. 2009-2021, 2010.
[9] 《太陽光発電設備に係る防火安全対策の検討結果》,東京消防庁,2014。
[10] 楊俊英,〈太陽光電公共建築設置應用〉,工研院太陽光電科技中心,2009年。
[11] 《大規模太陽光発電システム導入の手引書》,稚内サイト・北杜サイト,2011。
[12] UL 1703, ”Standard for flat-plate photovoltaic modules and panels,” Underwriters Laboratories Inc., 2004.
[13] UL 790, ”Standard for standard test methods for fire tests of roof coverings,” Underwriters Laboratories Inc., 2004.
[14] IEC 61730-1, ”Photovoltaic (PV) module safety qualification - part 1: requirements for construction,” International Electrotechnical Commission, 2016.
[15] IEC 61730-2, ”Photovoltaic (PV) module safety qualification - part 2: requirements for testing,” International Electrotechnical Commission, 2016.
[16] 株式会社インターリスク総研,〈太陽光発電の事故リスク〉,災害リスク情報第60号,2014。
[17] Grant, C. C., P.E., Fire fighter safety and emergency response for solar power systems final report, Fire Protection Research Foundation, 2013.
[18] 12news, “Fire at Apple facility in Mesa may have been caused by solar panels,” Retrieved from http://www.12news.com/story/news/local/valley/2015/05/26/mesa-industrial-fire/27968857/, 2015.
[19] Santoli, “Repair solar modules Scheuten Solar,” Retrieved from http://www.riparazionemodulischeuten.com/, 2013.
[20] 林靜梅,陳立峰,〈太陽能板起火危公安? 能源局:火災個案〉,公視新聞網。檢自:http://news.pts.org.tw/article/330171,2016年。
[21] Dhere, N. G., Shiradkar, N. S., “Fire hazard and other safety concerns of photovoltaic system, J Photo Energy,” Vol. 2, p. 022006-022006, 2012.
[22] 消防庁消防研究センター,〈太陽光発電システム火災と消防活動における安全対策〉,消防研究技術資料83号,2014。
[23] 鄭政利,詹肇裕,徐豪廷,〈太陽光電系統導入建築構造計畫及外殼設計之研究〉,設計學報第8卷第3期,2003年。
[24] Norton, B., “Enhancing the performance of building integrated photovoltaics. Solar Energy,” Vol. 85, p. 1629-1664, 2011.
[25] Kim, J. H., Kim, J. T., “A simulation study of air-type building-integrated photovoltaic-thermal system. Elsevier Energy Procedia,” Vol.30, 1016-1024, 2012.
[26] CNS 12514-1, “Fire-resistance tests – elements of building construction – part 1: general requirements,” National Standards of the Republic of China, 2014. [Text in Chinese].
[27] 工業技術研究院,〈一種太陽能光電模組〉,中華民國發明公開公報,2010年。
[28] 工業技術研究院,〈瓦型光電模組〉,中華民國發明公開公報,2009年。.
[29] Iencinella, D., “Centurioni, E., Busana, M. G., “Thin-film solar cells on commercial ceramic tiles,” Sol. Energ. Mat. Sol. Cells, Vol. 93, p. 206-210, 2009.
[30] 工業技術研究院,《非承重防火外牆耐火性試驗報告》,2010年。
[31] 楊錦懷,〈太陽能節能玻璃之研發與在零耗能建築之應用〉,技師期刊,2013 年。
[32] Murata, K., Yagiura, T., Takeda, K., Tanaka, M., Kiyama, S., “New type of photovoltaic module integrated with roofing material (highly fire-resistant PV tile),” Sol. Energ. Mat. Sol. Cells, Vol. 75, p. 647-653, 2003.
[33] Lai, I.T., A research on the application of photovoltaic system on the roof constructure of buildings, National Cheng Kung University Department of Architecture Master’s Thesis, 2010. [Text in Chinese].
[34] Wu, C.W., Studies on performances of fire prevention and smoke barrier for the building openings, National Cheng Kung University Department of Mechanical Engineering Doctoral Dissertation, 2007. [Text in Chinese].
[35] Lin, C.Y., Heat resistance of steel roller shutter covered by water film, National Cheng Kung University Department of Mechanical Engineering Master’s Thesis, 2010. [Text in Chinese].
[36] Lo, W.H., Heat transfer mechanism and fireproof characteristics of a steel roller shutter with flowing water film, National Cheng Kung University Department of Mechanical Engineering Master’s Thesis, 2014. [Text in Chinese].
[37] 雷明遠,《帷幕牆防火性能基準與評估驗證之研究》,內政部建築研究所自行研究報告,2003年。
[38] 雷明遠,《區劃開口部防火技術創新與應用研究(1/2)》,內政部建築研究所研究報告,2004年。
[39] 王聰,〈央視大火撲救內幕披露:大樓建材缺陷導致滅火難〉,狐搜新聞。檢自:http://news.sohu.com/20111109/n325071860.shtml,2011年。
[40] 瑞德感知科技,〈巴別塔的火焰挑戰(一):高層建築的火災風險〉,瑞德消防雜誌。檢自:http://blog.hexsave.com/%E5%B7%B4%E5%88%A5%E5%A1%94%E7%9A%84%E7%81%AB%E7%84%B0%E6%8C%91%E6%88%B0%E8%B6%85%E9%AB%98%E5%B1%A4%E5%BB%BA%E7%AF%89%E7%9A%84%E7%81%AB%E7%81%BD%E9%A2%A8%E9%9A%AA,2016年。
[41] Lin, Y.S., “Affecting factors and explanatory model of property losses in building fires. Journal of Housing Studies,” Vol. 13, p. 35-49, 2004. [Text in Chinese].
[42] CNS 14815, “Fire-resistance tests – elements of building construction – glazed elements,” National Standards of the Republic of China, 2014. [Text in Chinese].
[43] 林慶元,《實尺寸帷幕牆防火性能之實驗研究(I)》,行政院國家科學委員會專題研究計畫成果報告,2004年。
[44] 林慶元,《實尺寸帷幕牆防火性能之實驗研究(Ⅱ)》,行政院國家科學委員會專題研究計畫成果報告,2005年。
[45] Wan, F.S., The width effect in upward flame spread modelling, National Kaohsiung First University of Science and Technology Department of Safety, Health and Environmental Engineering, 2005.
[46] ISO 834-1, “Fire resistance tests-elements of building construction. part 1: general requirements,” International Organization for Standardization, 2015.
[47] CNS 14705-1, “Method of test for heat release rate for building material – part 1: cone calorimeter method,” National Standards of the Republic of China, 2013. [Text in Chinese].
[48] Sandar, M., Lee, W.J., Tseng, I.M., Hsu, W.C., “Properties of moldings made with materials impregnated with fast wood pyrolysis oil-based alcohol-soluble PF resins,” Quarterly Journal of Forest Research, Vol. 34, p. 227-236, 2012. [Text in Chinese].
[49] Odeh, S., Behnia, “M. Improving photovoltaic module efficiency using water cooling,” Heat Transfer Eng., Vol. 30, p. 499-505, 2009.
[50] BS EN 1363-1, “Fire resistance tests - part 1: general requirements,” BS EN Eurocodes, 1999.
[51] BS EN 1364-3, “Fire resistance tests for nonloadbearing elements – part 3: curtain walling-Full configuration (complete assembly),” BS EN Eurocodes, 2014.
[52] BS EN 1364-4, “Fire resistance tests for nonloadbearing elements – part 4: curtain walling – part configuration,” BS EN Eurocodes, 2014.
[53] ISO 13785-1, “Reaction to fire tests for façades – part 1: intermediate scale test,” International Organization for Standardization, 2002.
[54] ISO 13785-2, “Reaction to fire tests for façades – part 2: large-scale test,” International Organization for Standardization, 2002.
[55] NFPA 285, “Standard method of test for the evaluation of flammability characteristics of exterior non-load-bearing wall assemblies containing combustible components using the intermediate-scale, multistory test apparatus,” National Fire Protection Association, 2012.
[56] ASTM E2307-15b, ”Standard test method for determining fire resistance of perimeter fire barriers using intermediate-scale, multi-story test apparatus,” ASTM International, 2015.
[57] ASTM E119-00a, ” Standard test methods for fire tests of building construction and materials,” ASTM International, 2000.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw