進階搜尋


下載電子全文  
系統識別號 U0026-2507201619525500
論文名稱(中文) 濁水溪沖積扇地層孔隙力學特性之研究
論文名稱(英文) Pore mechanical characteristics of Choushui River alluvial fan
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 蔡明修
研究生(英文) Ming-Shiou Tsai
學號 N46031017
學位類別 碩士
語文別 英文
論文頁數 118頁
口試委員 指導教授-徐國錦
口試委員-李振誥
口試委員-倪春發
口試委員-蔡東霖
中文關鍵字 地層下陷  黏彈塑性模式  力學機制  時間序列 
英文關鍵字 land subsidence  visco-elasto plastic model  mechanical characteristics  time-series 
學科別分類
中文摘要 台灣山高坡陡水資源保存不易,自1960年代起,因超抽地下水導致地層下陷。因此,本研究選定近年來台灣地層下陷較嚴重之濁水溪沖積扇平原,藉由分析地下水位與地層下陷量之時間序列資料,描述地層壓縮之力學特性。由於沖積扇地層複雜,本研究將地層視為粗顆粒及細顆粒組成之均質模式,假設地層總應力為定值,將地下水位數值轉換為有效應力數值並與地層壓縮量進行繪圖,針對黏、彈、塑性三者力學特性探討。繪圖結果顯示研究區域地層同時擁有黏、彈、塑特性之混合行為。地層變形量由隨著地下水位變化呈現暫時性的黏彈性變形,及長時間持續壓縮的永久黏塑性變形共同組成。本研究改良傳統模式,將黏彈塑性模式分為黏彈性以及黏塑性部分,分別給予不同黏滯係數進行數值模擬。並以地下水位及分層監測井共站之箔子站為例,進行本模式及前人模式之比較,結果顯示本研究模式在第一、第二及第三含水層之壓縮量和現地資料比較之相對誤差分別為9.7%,1.6%,4.8%,相較其它模式準確。最後,將此研究應用在扇央之田洋站以及扇尾之虎尾站進行濁水溪沖積扇地質參數之推估及力學特性之探討。研究結果指出,在相同測站中,彈性模數和塑性所需壓縮時間隨著地層深度增加,但塑形模數則隨地層深度下降。以空間分布分析,虎尾站彈性模數最大,箔子站彈性模數最小,顯示靠近扇頂之含水層較扇尾含水層堅硬。但以黏滯係數進行比較,虎尾站最小,箔子站最大,顯示虎尾站之地層壓縮在未來持續時間為最久。各測站彈性黏滯係數皆遠大於塑性黏滯係數,黏彈性的變形反應因水位變化產生的壓縮震盪,在箔子第三含水層及田洋第二及第四含水層,水位變化及地層彈性壓縮的為即時反應,其延遲可以忽略,黏彈性變形可簡化為彈性變形。
英文摘要 In last few decades, water demands rapidly increases in central Taiwan. During 2014-2015, the over extraction of groundwater causes 309.1 km2 significant subsidence (subsidence rate > 3 cm/year) in Choushui River alluvial fan.
This study collect the groundwater level data and multi-layer compaction data to analyze the mechanism in Choushui River alluvial fan. The stratum is assumed to a homogeneous mixture of coarse-grains and fine-grains. Using the concept of effective stress to find the appropriate mechanical model to represent the complicated stratum. The result shows that the elastic, plastic and viscosity behaviors appear in the stratum. The compaction is composed by periodically visco-elastic compaction and long-term visco-plastic compaction. The study propose the visco-elasto-plastic model composed by a visco-elastic part and visco-plastic part in series. The elastic part and plastic part have different viscosity to represent two trends of compaction. The ration of Young’s modulus to viscosity is defined as the response retarded (RRF) factor. Boltz station located at distal of alluvial fan is chosen to compare the effective of various model. The average absolute error of model proposed in this study is 9.7%, 1.6% and 4.8% for aquifer 1, 2 and 3, respectively. It indicates the applicability and versatile of the model. Finally, the proposed model is applied to the Boltz, Tianyang and Huwei stations to investigate the mechanical characteristics in Choushui River alluvial fan. The result shows that the Young’s modulus of elastic part increases with depth. However, the Young’s modulus and RRF of plastic part decreases with depth. The result that the Young’s modulus of elastic in Huwei is maximum and Boltz is minimum indicates the stratum is solid in proximal fan. However, the RRF of plastic in Huwei is minimum and Boltz is maximum. It indicates the Huwei needs more long time to approach the compaction asymptotic value. RRF of elastic is much larger than RRF of plastic in all stations. The visco-elastic compaction represents the short-term periodical compaction and the visco-plastic compaction represents the long-term permanent compaction. The visco-elastic can be simplified to the elastic model at some sites because the time lag between variation of groundwater level and compaction can be ignored.
論文目次 Abstract I
摘要 III
誌謝 IV
Contents V
List of Tables VI
List of Figures VII
Notation XII
Chapter 1
Introduction 1
1.1 Background and Motivation 1
1.2 Flow Chart 9
Chapter 2
Methodology 11
2.1 Stress and strain 11
2.2 Constitutive equation 13
2.2.1 Elastic model 13
2.2.2 Plastic model 14
2.2.3 Elasto-plastic model 15
2.2.4 Viscosity (Newtonian liquid and non-Newtonian) 19
2.2.5 Visco-elastic model 21
2.2.6 Visco-plastic model 24
2.2.7 Visco-elasto-plastic model 26
2.3 Boltzmann superposition theory 30
2.3.1 Convolution 31
Chapter 3
Sensitivity analysis 34
3.1 Parameter description 34
3.2 Modeling scenario 36
3.2.1 Elastic model 36
3.2.2 Plastic model 39
3.2.3 Elasto-Plastic model 44
3.2.4 Visco-elastic model 49
3.2.5 Visco-plastic model 52
3.2.6 Visco-elasto-plastic model 58
3.2.7 The effect of initial hydraulic head 60
Chapter 4
Site application 63
4.1 Field site description 63
4.2 Variation of groundwater level and land subsidence 69
4.3 Model calibration and verification 75
4.4 Model comparison 77
4.5 Parameter inversion 91
4.6 Comparison of parameters from different models 105
Chapter 5
Conclusions and Suggestions 107
5.1 Conclusions 107
5.2 Suggestions 108
References 109
Appendix A 114
Appendix B 115
參考文獻 1.Amin, A. A. and Bankher K. A. (1997). Karst hazard assessment of eastern Saudi Arabia, Nature Hazards, 15:21-30.
2.Behl, A., Bhatia A. and Puri A. (2014). Convolution and application of convolution, JIRT, Vol.1, pp.2122-2126.
3.Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid, Journal of applied physics, Vol.26, pp.182-182.
4.Burbey, T. J. (2001). Stress-strain analyses for aquifer-system characterization, Ground water, 39(1), pp.128-136.
5.Burbey, T. J. (2006). Three-dimensional and strain induced by municipal pumping. Part 2: numerical analysis. Journal of Hydrology 330, 422-424.
6.Chiang, C. J., Lai T. C., Lai T. H., Hung C. C., Fei L. Y., Hou C. S., Chen J. E., Chen L. C., Lu S. Y. and Chou S. C. (1999). Hydrogeological survey report of Chosui River Watershed, Central Geological Survey: Taipei, Taiwan, pp.129.
7.Ferry, J. D. (1980). Viscoelastic Properties of Polymers, 3rd Edition, Wiley.
8.Galloway, D., Jones D. R. and Ingebritsen S. E. (1999). Land subsidence in the United States, U.S. Geological Survey Circular, 1182 (117pp).
9.Gambolati, G. and Freeze R. A. (1973). Mathematical Simulation of the Subsidence of Venice I Theory, Water Resource Research. Vol. 9, pp.721-733.
10.Gambolati, G., Gatto P. and Freeze R. A. (1991). Mathematical simulation of the subsidence of Ravenna, Water Resour. Res., 27(11), pp.2899-2918.
11.Gambolati, G., Teatini P. and Ferronato M. (2005). Anthropogenic land subsidence, Encyclopedia of Hydrological Sciences, vol.IV, chap.158, pp.2444-2459.
12.Gambolati, G. and Teatini P. (2015). Geomechanics of subsurface water withdrawal and injection, Water Resources Research, 51, 3922-3955.
13.Helm, D. C. (1976). One-dimensional simulation of the aquifer-system compaction near Pixley, California, 2. Stress-dependent parameters, Water Resources Research, 12, pp.375-391.
14.Hsu, W. C., Chang H. C., Chang K. T., Lin E. K., Liu J. K. and Liou Y. A. (2015). Observing Land Subsidence and Revealing the Factors That Influence It Using a Multi-Sensor Approach in Yunlin County, Taiwan, Remote sensing, 7, 8202-8223.
15.Hung, W. C., Hwang C. W., Chang C. P., Yen J. Y., Liu C. H. and Yang W. H. (2010). Monitoring severe subsidence in Taiwan by multi-sensors: Yinlin, the south Choushui River Alluvial Fan. Earth Science Geology 59, 1535-1548.
16.Hung, W. C., Hwang C. W., Liou J. C., Lin Y. S. and Yang H. L. (2012). Modeling-aquifer-system compaction and predicting land subsidence in central Taiwan. Engineering Geology. 147-148, pp.78-90.
17.Jacob, C. E. (1940). On the flow of water in elastic artesian aquifer, Trans. AGU, 21(2), 574-586.
18.Leaks, S. A. and Galloway D. L. (2010). Use of the SUB-WT package for mudflow to simulate aquifer-system compaction in Antelope Valley, California, USA. IAHS Publ.339, pp. 61-67.
19.Liu, C. H., Pan Y. W., Liao J. J., Huang C. T. and Shoung O. (2004). Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environmental Geology. 45:1154-1166.
20.Liu, C. H. and Du F. L. (2014). The land subsidence behaviors and mechanisms in Taiwan, Sino-Geotechnics Research, No139.
21.Lopez-Quiroz., Doin P., Tupin M. P., Briole F. and Nicolas P. (2015). Times series analysis of Mexico city subsidence constrained by radar interferometry, Journal of Applied Geophysics, 69(1), pp.1-15.
22.Lubliner, J. (2008). Plasticity theory, amazon.
23.Massey, B. S. (2011). Mechanics of fluids: 9th edition, Spon Press.
24.Neuman, S. P., Preller C. and Narasimhan T. N. (1982) Adaptive explicit-implicit quasi three-dimensional finite element model of flow and subsidence in multiaquifer system, Water Resource Research, Vol.18, pp.1151-1561.
25.Oh, H. J. and Lee S. (2010). Assessment of ground subsidence using GIS and the weights-of-evidence model, Engineering Geology, vol 115, pp.36-48.
26.Poland, J. F., Lofgren B. E., Ireland R. L. and Pugh R. G. (1975). Land subsidence in the San Joaquin Valley as of 1972, USGS Professional Paper, 437-H.
27.Roylance, D. (2001). Engineering viscoelasticity, Cambridge.
28.Sadd, M. H. (2004). Elasticity: Theory, Applications, and Numerics, Academic press.
29.Shen, S. L., Xu Y. S. and Hong Z. S. (2006). Estimation of land subsidence based on groundwater flow model, Marine Georesources and Geotechnology, 24, pp.149-167.
30.Shi, X. Q., Wu J. C., Ye S. J., Zhang Y., Xue Y Q., Wei Z. X., Li. Q. F. and Yu J. (2008). Regional land subsidence simulation in Su-Xi-Chang area and shanghai City, China, Engineering Geology 100:27-42.
31.Symon, K. R. (1960). Mechanics, 2nd ed., Addison Wesley.
32.Terzghi, K. (1923). Die berechnung durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen, Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl., 132, Abt.2A, pp.125-138.
33.Terzopoulos, D. and Fleischer. K. (1988). Modeling inelastic deformation viscoelasticity, plasticity, fracture. Computer graphics. Volume22, number4, pp. 269-278.
34.Truesdell, C. (1960). The rational mechanics of flexible of elastic bodies, Orell Fulssli.
35.Tsai, T. L. (2009). Viscosity effect on consolidation of poroelastic soil due to grpundwater table depression. Environ Geol. 57:1055-1064.
36.Tsai, T. L. (2015). A coupled one-dimensional viscoelastic-plastic model for aquitard consolidation caused by hydraulic head variations in aquifers. Hydrological processes 29, 4779-4793.
37.Vincent, J. (2012). Structural Biomaterials, Third edition, Princeton university press,
38.Viladkar, M. N., Sharama R. P. and Ranjan G. (1999). Viscoelastic finite element formulation for isolated foundations on clays, Computers and structures, Vol.43(2), pp.313-324.
39.Water Resources Agency. (2015). Changhua and Yunlin subsidence monitoring and analysis interim report 2015 year (in Chinese), Report of Water Resources Agency, Taipei.
40.Wu, J. H., Shi X. Q., Ye S. J., Xue Y. Q., Zhang Y., Wei Z. X. and Z. F. (2010). Numerical simulation of viscoelastoplastic land subsidence due to groundwater overdrafting in Shanghai, China, Journal of hydrologic engineering. 15:223-236.
41.Xue, Y. Q., Wu J. and Zhang Y. (2005). Land subsidence in China, EngGeol, 48:713-720.
42.Xue, Y. Q., Wu J. C., Zhang Z. Y., Shi X. Q., Wei Z. X., Li Q. F. and Yu J. (2008). Simulation of regional land subsidence in the southern Yangtze Delta, Science in China Series D: Earth Sciences, vol.51, pp.808-825.
43.Ye, S. J., Xue Y. Q., Wu J. C. and Li Q. F. (2012). Modeling visco-elastic-plastic deformation of soil with modified Merchant model. Environ Earth. 66:1497-1504.
44.Zhang, Y., Xue Y. Q., Wu J. C., Ye S. J., Wei Z. X., Li Q. F. and Yu J. (2007). Characteristics of aquifer system deformation in the southern Yangtse Delta, China. Engineering Geology. 90 pp.160-173.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw