
系統識別號 
U00262507201617080200 
論文名稱(中文) 
具改良型感應耦合結構之非接觸式條帶狀供電軌道系統 
論文名稱(英文) 
Contactless StripType Power Track System with Improved Inductively Coupled Structure 
校院名稱 
成功大學 
系所名稱(中) 
電機工程學系 
系所名稱(英) 
Department of Electrical Engineering 
學年度 
104 
學期 
2 
出版年 
105 
研究生(中文) 
林采樺 
研究生(英文) 
TsaiHua Lin 
學號 
N26031144 
學位類別 
碩士 
語文別 
英文 
論文頁數 
75頁 
口試委員 
召集委員林法正 口試委員白富升 口試委員梁從主 指導教授李嘉猷

中文關鍵字 
非接觸式感應供電傳輸
電能拾取器
條帶狀感應供電軌道

英文關鍵字 
Contactless power transmission
Power pickup
Striptype inductive power track

學科別分類 

中文摘要 
本文旨在針對自動化工廠之生產線搬運電動車用非接觸式條帶狀感應供電軌道系統，進行其感應耦合結構之改良。文中首先分析具面發射磁場的條帶狀感應供電軌道，並考量實際應用上之限制，利用磁場模擬和等效磁路模型來設計與分析，以選擇出最合適的電能拾取器鐵芯結構，有效提升感應耦合結構的耦合係數，並且提出新型條帶狀感應供電軌道的繞製方式來改善軌道磁場之均勻度。本文並考量所提系統的感應耦合結構與應用特性，選擇合適的諧振電路拓撲，並根據系統規格研製長2 m軌道和5 cm電能拾取器與初次級側電路。最後經由實驗量測，最大輸出功率400 W時其效率為65.7%，而於輸出功率186 W時可達最大傳輸效率70.34%。

英文摘要 
The aim of this thesis is an attempt to improve the inductively coupled structure for the contactless striptype inductive power track system. Firstly, with magnetic field simulation and magnetic equivalent circuit model, an appropriate core structure is designed for the striptype inductive power track which can emit a magnetic field from surface. Next, a distinct means of winding the circular coils is designed to smooth the magnetic flux density on the power track. Therefore, the proposed inductively coupled structure can effectively ameliorate the coupling coefficient of the structure. Then, the inductively coupled structure with a 2m long track and a 5cm long pickup and related circuits are implemented based on the feature of this system. Finally, in accordance with the experimental results, the maximum output power of overall system is 400 W with transfer efficiency of 65.7%, and the maximum transmission efficiency is measured to be 70.34% at an output power of 186 W.

論文目次 
摘要 I
Abstract II
Acknowledgements III
Contents IV
List of Table VI
List of Figures VII
Chapter 1 Introduction 1
11 General background information and literature review 1
12 Motivation and purpose of research 3
13 Methodology 3
14 Overview 5
Chapter 2 Contactless Inductive Power Transmission Techniques 6
21 Electromagnetic theory 6
22 Equivalent circuit model of inductively coupled structure 9
23 Nonideal characteristics of currentcarrying wires 12
231 Skin effect 12
232 Proximity effect 14
Chapter 3 Analysis of Inductively Coupled Structure and Resonant Circuits 15
31 Analysis of inductively coupled structure 15
311 Design and analysis of the power pickup 16
312 Magnetic equivalent circuit modeling of the pickup 23
313 Design and analysis of the striptype inductive power track 36
32 Analysis of resonant circuits 40
321 Resonant circuit of the primary side 42
322 Analysis of resonant topology 43
Chapter 4 Design of Contactless StripType Inductive Power Track System 47
41 Framework of overall system 47
42 Primary circuits 49
43 Design of inductively coupled structure 51
44 Secondary circuits 55
45 Design process for the system 56
Chapter 5 Simulated and Experimental Results 58
51 System specifications 58
52 Simulated results 60
53 Experimental results 63
Chapter 6 Conclusions and Future Work 69
61 Conclusions 69
62 Recommendations for future work 70
Reference 71

參考文獻 
[1] “IPT charge for electric vehicles,” ConductixWampfler delachaux group, Germany, KAT92000001E, 2009.
[2] Kamen, “Contactless Power System,” Vahle Corp., Germany, Nr. 9d/EN, Nov. 2008.
[3] Schoneberger, “Primove contactless and catenaryfree operation,” Bombardier Inc., 10832/SYS/09 2010/en, Canada, 2010.
[4] “非接觸供電,”AMIDOF Corp., Taiwan, NCPT, 2005.
[5] “Corporate profile,” Daifuku Corp., Japan, CP13E, 2013.
[6] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Design for efficiency optimization and voltage controllability of seriesseries compensated inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191–200, Jan. 2014.
[7] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Analysis and comparison of secondary series and parallelcompensated inductive power transfer systems operating for optimal efficiency and loadindependent voltagetransfer ratio,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2979–2990, June 2014.
[8] J. Hou, Q. Chen, X. Ren, X. Ruan, S. C. Wong, and C. K. Tse, “Precise characteristics analysis of series seriesparallel compensated contactless resonant converter,” IEEE J. Emerging Select. Topics Power Electron., vol. PP, no. 99, p. 1, May 2014.
[9] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “An optimized track length in roadway inductive power transfer systems,” IEEE J. Emerging Select. Topics Power Electron., vol. 2, no. 3, pp. 598–608, Sep 2014.
[10] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Comparison of positionindependent contactless energy transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2059–2067, Apr. 2013.
[11] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Modeling framework for contactless energy transfer systems for linear actuators,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 391–399, Jan. 2013.
[12] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Modematching technique applied to threedimensional magnetic field modeling,” IEEE Trans. Magn., vol. 48, no. 11, pp. 3383–3386, Nov. 2012.
[13] H. Matsumoto, Y. Neba, H. Iura, D. Tsutsumi, K. Ishizaka, and R. Itoh, “Trifoliate threephase contactless power transformer in case of windingalignment,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 53–62, Jan. 2014.
[14] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980–2993, June 2012.
[15] G. A. Covic and J. T. Boys, “Inductive power transfer,” in Proc. IEEE, vol. 101, no. 6, pp. 1276–1289, Jan. 2013.
[16] C. Liu, A. P. Hu, G. A. Covic, and N. K. C. Nair, “Comparative study of CCPT systems with two different inductor tuning positions,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 294–306, Jan. 2012.
[17] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 995–1002, July 2004.
[18] C. Y. Huang, J. T. Boys, and G. A. Covic, “LCL pickup circulating current controller for inductive power transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2081–2093, Apr. 2013.
[19] S. Raabe and G. A. Covic, “Practical design considerations for contactless power transfer quadrature pickups,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 400–409, Jan. 2013.
[20] J. E. James, D. J. Robertson, and G. A. Covic, “Improved AC pickups for IPT systems,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6361–6374, Dec. 2014.
[21] H. H. Wu, G. A. Covic, J. T. Boys, and D. J. Robertson, “A seriestuned inductivepowertransfer pickup with a controllable ACvoltage output,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 98–109, Jan. 2011.
[22] H. L. Li, A. P. Hu, and G. A. Covic, “A direct ACAC converter for inductive powertransfer systems,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 661–668, Feb. 2012.
[23] J. U. W. Hsu, A. P. Hu, and A. Swain, “Fuzzy logicbased directional fullrange tuning control of wireless power pickups,” IEEE Trans. Power Electron., vol. 5, no. 6, pp. 773–781, July 2012.
[24] H. Hao, G. A. Covic, and J. T. Boys, “A parallel topology for inductive power transfer power supplies,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1140–1151, Mar. 2014.
[25] L. Chen, J. T. Boys, and G. A. Covic, “Power management for multiplepickup IPT systems in materials handling applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 163176, Mar. 2015.
[26] J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrowwidth inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666–3679, Dec. 2011.
[27] W. Y. Lee, J. Huh, S. Y. Choi, X. V. Thai, J. H. Kim, E. A. AlAmmar, M. A. ElKady, and C. T. Rim, “Finitewidth magnetic mirror models of mono and dual coils for wireless electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1413–1428, Mar. 2013.
[28] S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, “New crosssegmented power supply rails for roadwaypowered electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5832–5841, Dec. 2013.
[29] C. Park, S. Lee, G. H. Cho, S. Y. Choi, and C. T. Rim, “Twodimensional inductive power transfer system for mobile robots using evenly displaced multiple pickups,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 558–565, Jan. 2014.
[30] S. Y. Choi, J. Huh, W. Y. Lee, and C. T. Rim, “Asymmetric coil sets for wireless stationary EV chargers with large lateral tolerance by dominant field analysis,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6406–6420, Dec. 2014.
[31] S. Y. Choi, B. W. Gu, S. W. Lee, W. Y. Lee, J. Huh, and C. T. Rim, “Generalized active EMF cancel methods for wireless electric vehicles,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5770–5783, Nov. 2014.
[32] C. Park, S. Lee, G. H. Cho, and C. T. Rim, “Innovative 5moffdistance inductive power transfer systems with optimally shaped dipole coils,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 817–827, Feb. 2015.
[33] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadwaypowered electric vehicles,” IEEE J. Emerging Select. Topics Power Electron., vol. 3, no. 1, pp. 1836, Aug. 2014.
[34] C. T. Rim, “The development and deployment of online electric vehicles (OLEV),” in Proc. IEEE ECCE, 2013.
[35] S. Y. Choi, S. W. Lee, E. S. Lee, S. Y. Jeong, B. W. Gu, C. T. Rim, “Selfdecoupled dual pickup coils with large lateral tolerance for roadway powered electric vehicles,” in Proc. IPEC, 2014, pp.1103–1108.
[36] J. H. Choi, S. K. Yeo, S. Park, J. S. Lee, and G. H. Cho, “Resonant regulating rectifiers (3R) operating for 6.78 MHz resonant wireless power transfer (RWPT),” IEEE J. SolidState Circuits, vol. 48, no. 12, pp. 2989–3001, Dec. 2013.
[37] S. Ahn and J. Kim, “Magnetic field design for high efficient and low EMF wireless power transfer in online electric vehicle,” in Proc. EUCAP, 2011, pp. 3979–3982.
[38] F. F. A. van der Pijl, M. Castilla, and P. Bauer, “Adaptive slidingmode control for a multipleuser inductive power transfer system without need for communication,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 271–279, Jan. 2013.
[39] F. F. A. van der Pijl, P. Bauer, and M. Castilla, “Control method for wireless inductive energy transfer systems with relatively large air gap,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 382–390, Jan. 2013.
[40] S. Chopra and P. Bauer, “Driving range extension of EV with onroad contactless power transfera case study,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 329–338, Jan. 2013.
[41] J. Y. Lee, H. Y. Shen, and K. C. Chan, “Design and implementation of removable and closedshape dual ring pickup for contactless linear inductive power track system,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 4036–4046, Nov./Dec. 2014.
[42] 張宇誠，具封閉型耦合結構非接觸式感應供電軌道系統之研究，國立成功大學電機工程學系碩士論文，2009年。
[43] 張華敬，電動搬運載具用非接觸式三相線型感應供電軌道系統之研製，國立成功大學電機工程學系碩士論文，2013年。
[44] 張雅婷，電動搬運載具用非接觸式條帶型感應供電軌道系統之研製，國立成功大學電機工程學系碩士論文，2015年。
[45] 楊昆翰，非接觸式片狀感應供電軌道系統之研製，國立成功大學電機工程學系碩士論文，2014年。
[46] Griffiths, D. J. (2008). Introduction to Electrodynamics. San Francisco, CA: Pearson.
[47] M. Borage, S. Tiwari, and S. Kotaiah, “Analysis and design of an LCLT resonant converter as a constantcurrent power supply,” IEEE Trans. Ind. Electron., vol. 52, no. 6, Dec. 2005.
[48] TLP250 Data Sheet, Toshiba Inc., 2002.
[49] PIC18F4520 Data Sheet, Microchip Technology Inc., 2004.
[50] 曾百由，微處理器原理與應用組合語言與PIC18微控制器，五南圖書出版公司，台灣，2009年。

論文全文使用權限 
同意授權校內瀏覽/列印電子全文服務，於20190725起公開。同意授權校外瀏覽/列印電子全文服務，於20190725起公開。 


