進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2507201614450400
論文名稱(中文) 電極介面對共軛有機分子元件磁電導效應之影響
論文名稱(英文) Electrode interface to the magneto conductance responses in the conjugated molecules diodes
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 104
學期 2
出版年 105
研究生(中文) 巫立堯
研究生(英文) Li-Yao Wu
學號 l76031299
學位類別 碩士
語文別 中文
論文頁數 112頁
口試委員 指導教授-郭宗枋
口試委員-藍永強
口試委員-傅耀賢
中文關鍵字 五環素  紅螢烯  電極介面  磁電導 
英文關鍵字 Pentacene  Rubrene  Magnetoconductance  Electrode interface 
學科別分類
中文摘要 本論文主要研究改變電極介面對磁電導效應之影響。由於有機磁電導效應來源主要與激發態有關,而電極介面會影響元件內部激發態,因此,我們使用了LiF/Al、BCP/Al、Ca/Al,三種具有不同特性之電極介面來製作元件,且發現五環素(Pentacene)與紅螢烯(Rubrene)兩者磁電導特性相似,但其磁電導機制來源截然不同,而改變電極介面只能影響MC ratio大小。接著我們摻雜C60,發現只有Pentacene元件中會產生CT Complex,而改變電極介面除了會影響內建電場大小以及電荷傳遞及收集外,也會影響激發態之exchange energy,進而改變磁電導曲線寬窄,但並不會對磁電導來源機制有太大之影響。
英文摘要 We have investigated the effect of electrode interface to the magneto conductance (MC) responses in the conjugated molecules diodes. Since Magnetic-field effects (MFEs) are came frome excited state of organic material, and excited state will be affect by different electrodes. Thus, we use three kinds of electrode interfaces to manufacture our devices. We found that both Pentacene and Rubrene device shows the similar MC response, but they are come from different mechanisms. In addition, change electrode interface only affect the MC ratio magnitude. Furthermore, we doping C60 to our devices and found that CT complex only appear at Pentacene device. Change electrode interface. In addition to change the built-in potential of device, the exchange energy of excited state will be affected too. As a result, the MC magnitude and width will be affected by different electrode interfaces.
論文目次 摘要 I
Abstract II~VI
致謝 VII
目錄 VIII
圖目錄 XII
表目錄 XX

第一章 研究領域與實驗動機...................................................................... 1
1-0前言-有機半導體簡介..................................................................... 1
1-1有機磁場效應.................................................................................. 3
1-1-a有機電子自旋....................................................................... 3
1-1-b有機磁場效應演進............................................................... 5
1-2實驗研究動機................................................................................ 17
1-3大綱................................................................................................ 18
第二章 有機磁效應理論機制討論............................................................ 19
2-0 前言.............................................................................................. 19
2-1氫原子模型自旋相依量子效應.................................................... 19
2-1-a 自旋軌道偶合作用(Spin-orbital coupling) ...................... 20
VIII
2-1-b 超精細結構(Hyperfine interaction).................................. 23
2-1-c 黎曼效應(Zeeman effect)................................................. 25
2-1-d 交換耦合作用力(Exchange interaction) .......................... 27
2-2激發態磁場效應............................................................................ 30
2-2-a 電子電洞對模型(Electron-hole pair model)....................... 31
2-2-b 三重態激發子與載子之交互作用(Triplet charge reaction) ..................................................................................................... 35
2-2-c單重激發態分子之裂變(Singlet fission model).................. 36
2-3 結論.............................................................................................. 38
第三章 實驗製作流程與量測分析方法..................................................... 40
3-0 有機半導體元件製程................................................................... 40
3-1 ITO導電玻璃基板的製備............................................................. 41
3-1-a 基板切割、清洗................................................................ 41
3-1-b 黃光顯影(Photolithography).............................................. 42
3-2 有機半導體元件的製備要點....................................................... 46
3-2-a 基板的清洗........................................................................ 46
3-2-b 陽極PEDOT:PSS的製程................................................. 46
3-2-c 主動層Pentacene、Rubrene與C60的製程....................... 48
3-2-d 陰極LiF/Al、BCP/Al的製程.......................................... 50
IX
3-3 有機半導體元件的量測與分析................................................... 51
3-3-a 有機元件的封裝................................................................ 51
3-3-b 磁效應量測儀器的架設.................................................... 52
3-3-c 元件的電性與磁性的量測與分析與訊號處理................. 54
3-4 結論.............................................................................................. 56
第四章 電極介面對共軛有機分子元件磁電導效應之影響...................... 57
4-0前言............................................................................................... 57
4-1 Pentacene元件之基本特性........................................................... 57
4-1-a 元件的電場量測特性........................................................ 58
4-1-b 元件的磁場量測特性........................................................ 60
4-2論單層Pentacene磁電導及改變電極介面之影響....................... 62
4-2-a分析單層Pentacene磁電導來源....................................... 62
4-2-b單層Pentacene磁電導數值解析....................................... 66
4-3論Pentacene與C60雙層及混蒸結構磁電導及改變電極介面之影響…….. ............................................................................................... 77
4-3-a分析雙層及混蒸元件磁電導來源...................................... 77
4-3-b論改變電極介面對雙層及混蒸元件磁電導之影響.......... 80
4-4論Rubrene元件磁電導及改變電極介面之影響.......................... 86
4-4-a分析單層Rubrene磁電導來源.......................................... 86
X
4-4-b單層Rubrene磁電導數值解析.......................................... 88
4-4-c單層Rubrene改變電極介面之影響.................................. 89
4-4-d論Rubrene加入C60之磁電導效應................................... 90
4-4-e論改變電極介面對Singlet fission磁效應之影響............. 97
4-5結論..................................................................................................... 101
5-1 結論............................................................................................ 103
5-2 未來展望.................................................................................... 104
參考資料 ................................................................................................... 107
參考文獻 [1] M. Pope, “Electroluminescence in Organic Crystals,” J. Chem. Phys. 38, 2043(1963).
[2] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. Macdiarmid, “Electrical conductivity in doped polyacetylene,” Phys. Rev. Lett. 39, 1098 (1977).
[3] A. Köhler, J. S. Wilson, and R. H. Friend, “Fluorescence and phosphorescence in organic materials,” Adv. Mater. 14, 701 (2002).
[4] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121 (1999).
[5] M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, K. J. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20, 2116 (2008).
[6] D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884 (2006).
[7] D. Braga, and G. Horowitz, “Hige-performance organic field-effect transistors,” Adv. Mater. 21, 1473 (2009).
[8] J. Cornil, J. L. Brédas, J. Zaumseil, and H. Sirringhaus, “Ambipolar transport in organic conjugated materials,” Adv. Mater. 19, 1791 (2007).
[9] Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, “Giant 107
magnetoresistancein organic spin-valves,” Nature 427, 821 (2004).
[10] R. C. Johnson, R. E. Merrifield, P. Avakian, and R. B. Flippen, “Effects of magnetic fields on the mutual annihilation of triplet Excitons in molecular crystals.” Phys. Rev. Lett. 19, 285 (1967).
[11] V. Ern and R. E. Merrifield, “Magnetic field effect on triplet Exciton quenching in organic crystals.” Phys. Rev. Lett. 21, 609–611 (1968).
[12] M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals,” 2nd edition, Oxford university press, ISBN 978-0-19-512963-2 (1999).
[13] U. E. Steiner, and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena. Re,” Chemv. 89, 51 (1989)
[14] E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, and H. H. Horhold, “Polaron-pair generatio in poly(phenylene vinylenes),” Phys. Rev. B 46, 9320 (1992)
[15] J. Kalinowski, J. Szmytkowski, and W. Stampor, “Magnetic hyperfine modulation of charge photogeneratio in solid films of Alq3,” Chem. Phys. Lett. 378, 380 (2003).
[16] J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380, 710 (2003).
[17] Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Köhler, M. K. Al-Suti, and M. S. Khan, “Large magnetoresistance in nonmagnetic π–conjugated semiconductor thin film devices,” Phys. Rev. B 72, 205202 (2005).
[18] Y. Sheng, T. D. Nguyen, G. Veeraraghavan, Ö. Mermer, M. Wohlgenannt, S. Qiu, U. Scherf, “Hyperfine interaction and magnetoresistance in
108
organic semiconductors,” Phys. Rev. B 74, 045213 (2006)
[19] B. Hu, and Y. Wu, “Tuning magnetoresistance between positive and negative values in organic semiconductors,” Nat. Mater. 6,985 (2007).
[20] B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500 (2009).
[21] N. J. Rolfe, M. Heeney, P. B. Wyatt, A. J. Drew, T. Kreouzis, and W. P. Gillin, “Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline),” Phys. Rev. B 80, 241201R (2009).
[22] J. Y. Song, N. Stingelin, A. J. Drew, T. Kreouzis, and W. P. Gillin, “Effect of excited states and applied magnetic fields on the measured hole mobility in an organic semiconductor,” Phys. Rev. B. 82.085205 (2010).
[23] P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M.Wohlgenannt, “Bipolaron mechanism for organic magnetoresistance,” Phys. Rev. Lett. 99, 216801 (2007).
[24] S. Gasiorowicz, “Quantum physics, 3rd edition,” Wiley international Edition, ISBN 0-471-42945-7.
[25] D. J. Griffiths, “Introduction to Quantum Mechanics, 2nd edition,” Prentice Hall, ISBN 0-13-111892-7.
[26] R. Eisberg, and R. Resnick, “Quantum physics of atoms, molecules, solids, nuclei, and particles”, 2nd edition, Wiley press, ISBN 0-471-87373-X (1985)
[27] A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, “Triplet energies of π–conjugated polymers,” Phys. Rev. Lett. 86, 1358 (2001).
109
[28] A. Köhler, and D. Beljonne, “The singlet-triplet exchange energy in conjugated polymers,” Adv. Funct. Mater. 14, 11 (2004).
[29] A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne, Z. Shuai, J. L. Brédas, V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Singlet-triplet splitting of geminate electron-hole pairs in conjugated polymers,” Phys. Rev. Lett. 93, 066803 (2004).
[30] B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500 (2009).
[31] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electro- phosphorescence,” Appl. Phys. Lett. 75, 4 (1999).
[32] M. A. Baldo, and S. R. Forrest, “Transient analysis of organic electro- phosphorescence: I. Transient analysis of triplet energy transfer,” Phys. Rev. B 62, 10958 (2000).
[33] A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, “Triplet energies of π–conjugated polymers,” Phys. Rev. Lett. 86, 1358 (2001).
[34] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy,” J. Am. Chem. Soc. 130, 3030 (2008).
[35] Z. Xu, and B. Hu, “Photovoltaic processes of Singlet and triplet excited states in organic solar cells,” Adv. Mater. 18, 2611–2617 (2008).
[36] S. Singh, W. J. Jones, W. Siebrand, B. P. Stoicheff, and W. G. Schneider,
110
“Laser generatio of Excitons and fluorescence in Anthracene crystals,” Chem. Phys. Lett. 42, 330 (1965).
[37] M. B. Smith and J. Michl, “Singlet fission, ” Chem. Rev. Lett. 110, 6891–6936 (2010).
[38] G. B. Piland, J. J. Burdett, D. Kurunthu, and C. J. Bardeen, “Magnetic field effects on Singlet fission and fluorescence decay dynamics in amorphous Rubrene,” Chem. Phys. C Lett. 117, 1224–1236 (2013).
[39] R. E. Merrifield, “Theory of magnetic field effects on the mutual annihilation of triplet Excitons,” Chem. Phys. Lett. 48, 4318 (1968).
[40] T. H. Lee, T. F. Guo, J. C. A. Huang, and T. C. Wen. “Modulations of photoinduced magnetoconductance for polymer diodes,” Appl. Phys. Lett. 92, 153303 (2008).
[41] T. H. Lee, J. H. Li, W. S. Huang, B. Hu, J. C. A. Huang, T. F. Guo, and
T. C. Wen. “Magnetoconductance responses in organic charge-transfer-
complex molecules,” Appl. Phys. Lett. 99, 073307 (2011).
[42] W. S. Huang, Z. R. Xu, K.-C. Chen, T. F. Guo, J. C. A. Huang, and T. C. Wen, “Modulations in line shapes of magnetoconductance curves for diodes of pentacene:Fullerene charge transfer complexes,” Org. Electron. 15, 3076 (2014).
[43] H. Zang, Z. Xu, and B. Hu, “Magneto-optical investigations on the formation and dissociation of intermolecular charge-transfer complexes at donor-acceptor interfaces in bulk-heterojunction organic solar cells,” J. Phys. Chem. B 114, 5704 (2010).
[44] H. Zang, I. N. Ivanov, and B. Hu, “Magnetic studies of photovoltaic 111
processes in organic solar cells,” IEEE J. Sel. Top. Quantum Electron. 16, 1801 (2010).
[45] M. Li, H. Wang, L. He, H. Zang, H. Xu, and B. Hu, “Optically tunable spin-exchange energy at donor: Acceptor interfaces in organic solar cells,” Appl. Phys. Lett. 105, 023302 (2014).
[46] H. Zang, L. Yan, M. Li, Z. Gai, M. Wang, and B. Hu, “Magneto-Dielectric effects induced by optically-generated intermolecular charge-transfer states in organic Semiconducting materials,” Sci. Rep. 3, (2013).
[47] Y. Zhang, Y. Lei, Q. Zhang, and Z. Xiong, “Thermally activated singlet exciton fission observed in rubrene doped organic films,” Org. Electron. 15, 577, (2014).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw