進階搜尋


下載電子全文  
系統識別號 U0026-2507201608432000
論文名稱(中文) 具垂直磁浮型旋轉式感應耦合結構之非接觸式旋轉供電系統
論文名稱(英文) Contactless Rotating Power Transfer System with Vertical Maglev Rotary Inductive Coupled Structure
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 陳重羽
研究生(英文) Chong-Yu Chen
學號 N26034231
學位類別 碩士
語文別 中文
論文頁數 103頁
口試委員 指導教授-李嘉猷
口試委員-林法正
口試委員-白富升
口試委員-陳建富
中文關鍵字 非接觸式旋轉供電系統  旋轉式感應耦合結構  垂直磁浮供電系統架構 
英文關鍵字 Contactless rotating power transfer system  Rotary inductive coupled structure  Vertical maglev power transfer system 
學科別分類
中文摘要 本論文旨就生物醫療與工業用高速旋轉機具中,旋轉部電能供給及降低運轉磨耗之需求,研製同時具垂直磁浮、非接觸式旋轉供電及非接觸式旋轉驅動效益之旋轉機具。文中建立垂直磁浮用直流線圈與電能傳輸交流線圈共構型旋轉式感應耦合結構,並分別提出不同線圈與導磁材料配置且透由磁路模擬軟體進行分析,進一步設計同軸形式線圈夾層設計搭配延伸導磁材料,以有效增強電磁感應能力。為驗證所提旋轉式感應耦合結構之電能傳遞穩定性,本文研製無刷雙饋式旋轉驅動架構,並以雙永磁式磁浮層作為旋轉機具之水平穩定機制。其中為研製高精度之旋轉機具,本研究採用三維列印技術設計並製作整合支架。經由實驗測試本文所提系統確能達致垂直磁浮、非接觸旋轉供電及非接觸旋轉驅動運作,其整體系統最大傳輸功率可達1113 W,且電能轉換效率為89%;而於整體系統傳輸功率為300 W時,電能轉換效率則達96.8%。
英文摘要 In this thesis, a new type vertical maglev rotary inductive coupling structure of the contactless rotating power transfer system for the high-speed rotation applications is developed. The co-construction of the magnetic levitation DC coil and the inductive power transfer AC coils are proposed in this thesis. The magnetic field finite element method simulation software is used to analyze the different structures of the coils and magnetic materials. The coaxial-interlayered windings and extending magnetic materials are designed to improve the coupling capability. Moreover, for the reason to verify the feasibility of the proposed rotary inductive coupled structure, a brushless doubly fed rotationally driven architecture has been integrated. Two permanent maglev layers are taken as the horizontally stable mechanism in this thesis. In order to design an accurate structure, the three-dimensional printing technology is used to print its frame. Finally, the experimental results show that the rotary machinery is able to be powered and work by the proposed system. The maximum output power received in load is 1113 W with transmission efficiency of 89%. In addition, the transfer efficiency has reached about 96.8% with 300-W output power.
論文目次 中文摘要 I
英文摘要 II
英文延伸摘要 III
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1 研究目的與背景 1
1-2 非接觸式電能傳輸技術於旋轉機具之應用 5
1-3 研究方法 8
1-4 論文大綱 10
第二章 非接觸感應傳能原理與特性分析 11
2-1 前言 11
2-2 電磁感應傳能基本原理 11
2-3 感應線圈非理想特性分析 14
2-3-1 導線集膚效應 14
2-3-2 導線近接效應 16
2-4 非接觸式感應電能傳輸理論分析 17
2-4-1 鬆耦合變壓器模型建立 18
2-4-2 耦合結構互感與耦合係數 20
2-5 導磁材料與傳統旋轉供電感應耦合結構分析 21
2-5-1 導磁材料特性分析 21
2-5-2 傳統旋轉式感應耦合結構線圈配置分析 22
2-5-3 傳統旋轉式感應耦合結構鐵芯配置分析 24
2-5-4 旋轉式導磁鐵芯間隙邊緣漏磁通分析 26
第三章 垂直磁浮型旋轉供電結構分析與研製 28
3-1 前言 28
3-2 垂直磁浮與結構水平穩定機制分析與設計 28
3-2-1 垂直磁浮架構模型分析 28
3-2-2 垂直磁浮與感應耦合共構線圈配置分析 30
3-2-3 永磁式磁浮水平穩定機制 31
3-3 新型旋轉式感應耦合結構設計分析 33
3-3-1 新型旋轉式感應耦合結構基本配置 33
3-3-2 新型旋轉式感應耦合結構改良設計 36
3-3-3 新型旋轉式感應耦合結構磁路分析 38
3-4 非接觸感應耦合結構諧振電路分析 42
3-4-1 諧振架構分析 42
3-4-2 諧振架構之非理想特性分析與設計 45
3-5 垂直磁浮型旋轉感應耦合結構製作與量測 47
3-5-1 採用之3D列印技術說明 47
3-5-2 新型旋轉式感應耦合結構設計製作與量測 48
3-5-3 新型感應耦合結構諧振架構分析 51
3-5-4 垂直磁浮及水平穩定永磁式磁浮架構製作 53
3-5-5 旋轉驅動架構設計製作 57
第四章 非接觸旋轉供電驅動系統與電路設計 60
4-1 前言 60
4-2 非接觸式旋轉供電驅動系統架構 60
4-3 電能傳輸電路架構設計 61
4-3-1 初級側高頻電源激勵電路 61
4-3-2 次級側電能拾取端電路設計 64
4-4 機具旋轉驅動電路設計 65
4-4-1 旋轉部位置感測電路設計 65
4-4-2 固定部定子電樞驅動電路設計 68
4-4-3 機具之旋轉驅動策略 69
4-5 旋轉驅動控制核心 74
4-5-1 A/D轉換功能 75
4-5-2 數位輸出輸入功能 77
4-5-3 整體系統程式流程 78
4-6 垂直磁浮型非接觸供電旋轉機具整合與設計流程 79
第五章 模擬與實驗結果 83
5-1 前言 83
5-2 感應供電架構Simplis電路模擬 83
5-3 感應耦合結構電能傳輸特性量測 86
5-3-1 次級側於靜止狀態下電能傳輸特性量測 87
5-3-2 最大輸出功率與負載變動電能傳輸特性量測 89
5-4 非接觸式感應耦合結構整合自製旋轉驅動架構實測 91
5-5 垂直磁浮整合非接觸式旋轉供電系統實測 93
第六章 結論與未來研究方向 95
6-1 結論 95
6-2 未來研究方向 96
參考文獻 97
參考文獻 [1]B. W. Tietjen, “The rolling radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 20, no. 9, pp. 18-24, Sep. 2005.
[2]K. Herzog, E. Schulte, M. A. Atmanand, and W. Schwarz, “Slip control system for a deep-sea mining machine,” IEEE Trans. Autom. Sci. Eng., vol. 4, no. 2, pp. 282-286, Apr. 2007.
[3]C. Zhou, H. Yang, and L. Yang, “Real time monitoring of input force for high speed power chucks used in CNC lathes,” in Proc. IEEE ASME, 2010, pp. 387-391.
[4]H. Bangcheng, Z. Shiqiang, W. Xi, and Y. Qian, “Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application,” IEEE Trans. Magn., vol. 48, no. 6, pp. 1959-1966, June 2012.
[5]Y. C. Wang, Y. F. Chen, and Y. C. Tseng, “Using rotatable and directional (R&D) sensors to achieve temporal coverage of objects and its surveillance application,” IEEE Trans. Mobile Comput., vol. 11, no. 8, pp. 1358-1371, Aug. 2012.
[6]沈紘宇,非接觸式電能傳輸之新型感應耦合結構設計,國立成功大學電機工程學系博士論文,2014年。
[7]詹凱筌,具可拆卸機制封閉式耦合結構之非接觸式線型感應饋電軌道系統,國立成功大學電機工程學系碩士論文,2012年。
[8]李成斌,具新型三相感應耦合結構之電動車用非接觸式充電槳系統,國立成功大學電機工程學系碩士論文,2013年。
[9]陳信銘,旋轉式感應耦合結構於可旋型非接觸式電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2014年。
[10]黃立宇,具新型旋轉式感應耦合結構之非接觸式磁浮旋轉供電系統研製,國立成功大學電機工程學系碩士論文,2015年。
[11]張雅婷,電動搬運載具用非接觸式條帶型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2015年。
[12]L. Huang, A. P. Hu, A. Swain, S. Kim, and Y. Ren, “An overview of capacitively coupled power transfer—a new contactless power transfer solution,” in Proc. IEEE ICIEA, 2013, pp. 461-465.
[13]D. C. Ludois, M. J. Erickson, and J. K. Reed, “Aerodynamic fluid bearings for translational and rotating capacitors in noncontact capacitive power transfer systems,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1025-1033, Apr. 2014.
[14]G. Schweitzer and E. H. Maslen, Magnetic Bearings: Theory, Design, and Application to Rotating Machinery, 2009: Springer-Verlag.
[15]P. Tsiotras and M. Arcak, “Low-bias control of AMB subject to voltage saturation: state-feedback and observer designs,” IEEE Trans. Contr. Syst., vol. 13, no. 2, pp. 263-273, Mar. 2005.
[16]D. L. Trumper, S. M. Olson, and P. K. Subrahmanyan, “Linearizing control of magnetic suspension systems,” IEEE Trans. Contr. Syst., vol. 5, no. 4, pp. 427-438, Jul. 1997.
[17]W. G. Hurley and W. H. Wolfle, “Electromagnetic design of a magnetic suspension system,” IEEE Trans. Contr. Syst., vol. 40, no. 2, pp. 124-130, May 1997.
[18]J. L. Lin and B. C. Tho, “Analysis and μ-based controller design for an electromagnetic suspension system,” IEEE Trans. Educ., vol. 41, no. 2, pp. 116-129, May 1998.
[19]W. G. Hurley, M. Hynes, and W. H. Wolfle, “PWM control of a magnetic suspension system,” IEEE Trans. Educ., vol. 47, no. 2, pp. 165-173, May 2004.
[20]J. Hirai, T. W. Kim, and A. Kawamura, “Integral motor with driver and wireless transmission of power and information for autonomous subspindle drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 13-20, Jan. 2000.
[21]J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of power and information and information for cableless linear motor drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 21-27, Jan. 2000.
[22]A. Abdolkhani, A. P. Hu, and N. K. C. Nair, “A double stator through-hole type contactless slipring for rotary wireless power transfer applications,” IEEE Trans. Energy. Convers., vol. 29, no. 2, pp. 426-434, Jan. 2014.
[23]A. Abdolkhani and A. P. Hu, “Improved coupling design of contactless slipring for rotary applications,” IEEE Trans. Ind. Appl., vol. 3, no. 1, pp. 288-295, Mar. 2015.
[24]A. Abdolkhani, A. P. Hu, G. A. Covic, and M. Moridnejad, “Contactless slipring system based on rotating magnetic field principle for rotary applications,” in Proc. IEEE ECCE, 2013, pp. 2566-2573.
[25]A. Abdolkhani and A. P. Hu, “A contactless slipring system by means of axially travelling magnetic field,” in Proc. IEEE ECCE, 2012, pp. 1796-1803.
[26]A. Abdolkhani and A. P. Hu, “Through-hole contactless slipring system based on rotating magnetic field for rotary applications,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3644-3655, Nov.-Dec. 2014.
[27]A. Abdolkhani and A. P. Hu, “A contactless slipring system based on axially travelling magnetic field,” IEEE Trans. Ind. Appl., vol. 3, no. 1, pp. 280-287, Mar. 2015.
[28]K. D. Papastergiou and D. E. Macpherson, “Air-gap effects in inductive energy transfer,” in Proc. IEEE PESC, 2008, pp. 4092-4097.
[29]R. Trevisan and A. Costanzo, “ A 1-kW contactless energy transfer system based on a rotary transformer for sealing rollers,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6337-6345, Nov. 2014.
[30]B. A. Potter and S. A. Shirsavar, “Design, implementation and characterization of a contactless power transfer system for rotating applications,” in Proc. IEEE IECON, 2006, pp. 2168-2173.
[31]J. P. C. Smeets, L. Encica, and E. A. Lomonova, “Comparison of winding topologies in a pot core rotating transformer,” in Proc. IEEE OPTIM, 2010, pp. 103-110.
[32]J. P. C. Smeets, D. C. J. Krop, J. W. Jansen, M. A. M. Hendrix, and E. A. Lomonova, “Optimal design of a pot core rotating transformer,” in Proc. IEEE ECCE, 2010, pp. 4390-4397.
[33]J. Veitengruber, F. Rinderknecht, and H. E. Friedrich, “Preliminary investigations of an inductive power transfer system for the rotor power supply of an electric traction drive,” in Proc. IEEE EVER, 2014, pp. 1-8.
[34]D. Hirschmann, C. P. Dick, S. Richter, and R. W. D. Doncker, “Design of a contactless rotary energy transmission for an industrial application,” in Proc. IEEE PESC, 2008, pp. 4314-4319.
[35]Z. Long, X. Lin, W. Yuan, and J. Zhang, “Modeling on a non-contact power transmission system in ultrasonic machining,” in Proc. IEEE ROBIO, 2013, pp. 1042-1047.
[36]D. Bortis, L. Fassler, A. Looser, and J. W. Kolar, “Analysis of rotary transformer concepts for high-speed applications,” in Proc. IEEE APEC, 2013, pp. 3262-3269.
[37]D. Bortis, I. Kovacevic, L. Fassler, and J. W. Kolar, “Optimization of rotary transformer for high-speed applications,” in Proc. IEEE COMPEL, 2013, pp. 1-6.
[38]L. J. Veillette, “Highlights of a brushless direct-drive solar array control system design,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-7, no. 2, pp. 324-328, 1971.
[39]T. A. Stuart, R. J. King, and H. A. Shamseddin, “Rotary transformer design with fixed magnetizing and/or leakage inductances,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-22, no. 5, pp. 565-572, 1986.
[40]M. Carpita, M. D. Vivo, S. Gavin, and D. Bommottet, “A rotating contactless power transfer system for space applications,” in Proc. IEEE SPEEDAM, 2014, pp. 238-242.
[41]A. Esser and A. Nagel, “Contactless high speed signal transmission integrated in a compact rotatable power transformer,” European Power Electronics Association, pp. 409-414, 1993.
[42]A. Esser and H. C. Skudelny, “A new approach to power supplies for robots,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 872-875, 1991.
[43]G. Gao and W. Chen, “Design challenges of wind turbine generators,” in Proc. EIC, 2009, pp. 146-152.
[44]M. Ruviaro, F. Runcos, N. Sadowski, and I. M. Borges, “Analysis and test results of a brushless doubly fed induction machine with rotary transformer,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2670-2677, Jun. 2012.
[45]M. Ruviaro and F. Runcos, “A brushless doubly fed induction machine with flat plane rotary transformers,” in Proc. IEEE ICEM, 2012, pp. 23-29.
[46]G. Friedrich and A. Girardin, “Integrated starter generator,” IEEE Ind. Appl. Mag., vol. 15, no. 4, pp. 26-34, Jul./Aug. 2009.
[47]J. Legranger, G. Friedrich, S. Vivier, and J. C. Mipo, “Design of a brushless rotor supply for a wound rotor synchronous machine for integrated starter generator,” in Proc. IEEE VPPC, 2007, pp. 236-241.
[48]“Slip ring solutions-industrial applications,” Schleifring und Apparatebau GmbH, Germany. [Online]. Available:http://www.schleifring.com/inc/
file.inc.php?id=106&filename=SCHLEIFRING_IndustrialApps.pdf, 2013.
[49]“Slip ring solutions-CT applications,” Schleifring und Apparatebau GmbH, Germany. [Online]. Available: http://www.schleifring.de/inc/file.
inc.php?id=96&filename=SCHLEIFRING_CTApplications_022016.pdf, 2016.
[50]“Proxi-ring,” PowerbyProxi, New Zealand. [Online]. Available: http://powerbyproxi.com/innovations/industrial/proxi-ring/, 2016.
[51]“Slip rings rotating transmission systems,” Venturetec Mechatronics GmbH, Germany. [Online]. Available: http://venturetec.de/downloads/
Slip_ring_brochure_vm_web_version.pdf, 2016.
[52]“PowerLink Non-Contact Power Technology,” Analogic Co., U. S. A. [Online]. Available: http://www.analogic.com/products-medical-
computer-tomography-powerlink.htm, 2016.
[53]“Inductive power transfer and data coupling devices,” MESA Systems Co., U. S. A. [Online]. Available: http://www.mesasystemsco.com/pdf/
Inductive_Power_transfer_data_coupling_products_overview.pdf, 2014.
[54]“Contactless slip rings,” Pan-Link Electrical Technology Co., Ltd., China. [Online]. Available: http://www.pan-link.cn/ch/other_pro_3.html, 2016.
[55]“Contactless slip rings,” Pan-Link Electrical Technology Co., Ltd., China. [Online]. Available: http://www.pan-link.cn/index.php/solution-17.html, 2016.
[56]C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[57]X. Liu, W. M. Ng, C. K. Lee, and S. Y. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” in Proc. IEEE APEC’08, 2008, pp. 645-650.
[58]“安全資料表,” 3D Systems Co., U. S. A. [Online]. Available:http://cubify.s3.amazonaws.com/Printers/Safety%20data%20sheets/cube_cubex_sds_abs_chinese_traditional.pdf, 2011.
[59]UCC3895 Data Sheet, Texas Instruments Inc., 2013.
[60]IR2110 Data Sheet, International Rectifier Inc., 2005.
[61]IRFB4115PbF Data Sheet, International Rectifier Inc., 2014.
[62]GBU1006 Data Sheet, Diodes Inc., 2014.
[63]TCST2013 Data Sheet, Vishay Inc., 2009.
[64]TC4093BP Data Sheet, Toshiba Inc., 2001.
[65]“PIC18F4520-I/P,” iCircuit Technologies [Online]. Available: http://www.piccircuit.com/shop/pic-microcontroller/177-pic18f4520.html, 2008.
[66]PIC18F4520 Data Sheet, Microchip Technology Inc., 2004.
[67]“A/D Control Register,” ermicroblog [Online]. Available: http://www.ermicro.com/blog/?p=1408, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw