系統識別號 U0026-2507201414503800
論文名稱(中文) 知覺網站複雜度與任務科技配適對網站使用意圖之影響:以眼動實驗及問卷方法進行研究
論文名稱(英文) The effects of website complexities and task-technology fit on website use intentions: An investigation using eye-tracking experiments and survey
校院名稱 成功大學
系所名稱(中) 資訊管理研究所
系所名稱(英) Institute of Information Management
學年度 102
學期 2
出版年 103
研究生(中文) 王斌
研究生(英文) Bin Wang
學號 R76011058
學位類別 碩士
語文別 中文
論文頁數 88頁
口試委員 口試委員-陳正忠
中文關鍵字 知覺網站複雜度  眼動追蹤  科技配適理論  持續使用意圖 
英文關鍵字 Perceived website complexity  Eye tracking  Task-Technology Fit 
中文摘要 近幾年網頁設計技術逐漸成熟,加上電子商務市場競爭激烈,而容易使用的操作介面,讓消費者可以輕鬆地完成流程,減少消費者在使用上的阻力,而本研究並非探討單純的網頁設計因子,而是將網頁設計元素綜整為三種要素,分別為網站成份複雜度、協調複雜度、動態複雜度,而在網站上活動主要可以分為目標導向與體驗導向,而過去研究也發現個人特質也會影響對於網站的採用,將使用科技準備度為個人特徵進行探討,為了探討複雜度與任務下會對使用者的持續使用意圖造成怎樣的影響,本研究選擇利用任務科技配理論進行探討。
任務科技配適度 (TTF)已廣泛的被用在解釋資訊科技的採用,常被用來衡量使用者所用之資訊科技是否與其任務配適,其中主要分為三個構面,分別為任務、個人與科技特徵,當此三個構面配合的越好則任務配適越佳,而任務配適度將會正向影響使用者的持續使用意圖。
眼動追蹤技術(eye tracking)是一種運用來記錄人類行為的測量行為,此種技術能協助研究者紀錄使用者在特定時間的凝視點以及凝視資訊陳列的運動順序及軌跡。眼動追蹤技術有助於建構使用者觀看螢幕的注意力分布與資訊處理同步紀錄的眼動資料,可提供介面評估的客觀資料,因此眼動追蹤方法處理視覺訊息是相當有效的做法,利用眼動追蹤技術探討在不同複雜度、任務目標下會有如何的眼動指標差距。
英文摘要 According to an investigation by Lotto group and the Institute for Information Industry, website design and usage are very important issues. Most website usage studies typically adopt questionnaire surveys, but sometimes users can’t express their real thoughts in a questionnaire survey. Therefore, in this study, an eye tracking method and questionnaire survey are used simultaneously.
Prior studies discussing websites have mainly focused on their design. However, other than focusing on the design of websites, there are some other factors that must be taken into consideration. This study explores websites through personal features as well as technological characteristics and the task type used in the website technology. Perceived website complexity is an important factor for identifying interface design simplicity. In the case of websites, a user friendly interface will be a key factor related to whether a user can easily use a website. This study uses perceived website complexity, along with task-technology fit theory, to explore intent to continue use of a website.
Based on 378 questionnaires filled out by website users, this study applied PLS (partial least-squares) to investigate the proposed model. The results indicate that technology readiness has a positive influence on task-technology fit; perceived dynamic complexity negatively influences task-technology fit; perceived coordinative complexity negatively influences task-technology fit, and task technology fit has a positive influence on user intent to continue use. In the eye-tracking part of the experiment, several key eye-movements are identified that distinguish perceived component complexity, perceived coordinative complexity and perceived dynamic complexity at high or low levels. The results indicate that use of websites is not only influenced by technology, but is also significantly impacted by individual characteristics. The research results can provide a practical reference for website service providers.
論文目次 摘要 i
Abstract ii
誌謝 vi
目錄 vii
圖目錄 x
表目錄 xi
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究範圍與限制 2
第四節 研究流程 3
第二章 文獻探討 4
第一節 知覺網站複雜度(Perceived website complexity) 4
2.1.1 知覺網站複雜度 4
2.1.2 知覺網站複雜度構成要素 5
第二節 任務模式 6
第三節 科技準備度(Technology Readiness; TR) 6
第四節 任務科技配適模型 8
2.4.1 任務科技配適模型過去研究方向 9
2.4.2 科技績效鏈(Technology to Performance Chain, TPC) 10
2.4.3 使用科技配適理論探之研究 11
2.4.4 任務科技配適理論構面 12
第五節 眼動儀實驗方法 16
第三章 實驗規劃與研究方法 20
第一節 研究模型 20
第二節 研究假說 21
3.2.1 科技準備度 21
3.2.2 知覺網站複雜度與任務科技配適度 23
3.2.3 任務模式、知覺網站複雜度與任務科技配適度 24
3.2.4 任務與任務科技配適度與持續使用意圖 25
眼動儀實驗設計 27
第三節 實驗對象 27
第四節 實驗儀器設備 28
第五節 實驗素材 28
第六節 操弄檢定 35
第七節 實驗設計 35
第八節 實驗流程 37
第九節 分析辦法 40
第十節 問卷實驗辦法 41
3.10.1 問卷設計 42
3.10.2 科技準備度問項 42
3.10.3 知覺網站複雜度問項 44
3.10.4 任務模式問項 45
3.10.5 任務科技配適度問項 46
3.10.6 持續使用意圖 47
第四章 資料分析 48
第一節 眼動資料分析 48
4.1.1 受測者基本資料 48
4.1.2 知覺成分複雜度指標分析 49
4.1.3 知覺協調複雜度指標分析 51
4.1.4 知覺動態複雜度 52
第二節 前測資料分析 54
第三節 問卷資料分析 63
4.3.1 資料分析 63
4.3.2 信度分析 64
4.3.3 結構方程式衡量模型 69
4.3.4 收斂效度 69
4.3.5 區別效度 72
4.3.6 共線性檢測 73
第四節 結構方程式之結構模型 73
第五節 調節效果驗證 75
第六節 小結 78
第五章 結論與建議 79
第一節 研究發現與結論 79
第二節 研究貢獻 81
第三節 研究限制與未來研究方向 82
參考文獻 84
參考文獻 Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies?. Decision sciences, 30(2), 361-391.
Aiken, L. S., West, S. G., & Reno, R. R.(1991). Multiple Regression: Testing and Interpreting Interations. Thousand Oaks, CA: Sage Publications
Bagozzi, R. P., & Yi, Y. (1988).On the evaluation of structural equationmodels.Journal of the academy of marketing science, 16(1), 74-94.
Barber, H., Janes, I., and Boyland, M. (2004), "The full picture: Using eye-tracking to make website design more effective," World Association of Research Professional,ESOMAR, 1-15.
Baxter, M. (1995), Product Design-Practical Methods for the Systematic Development of New Product, London: Chapman and Hall
Benbasat, I., Dexter, A. S., & Todd, P. (1986). An experimental program investigating color-enhanced and graphical information presentation: an integration of the findings. Communicatiom of fhe ACM 29(11), 1094-1105.
Berlyne, D. E. (1970). Novelty, complexity, and hedonic value. Perception & Psychophysics, 8(5), 279-286.
Bhattacherjee, A. (2001). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201-214.
Boaz, A., Cuneo, J., Kreps, D., & Watson, M. (2002). Using Eye Tracking Technology For Web Site Usability Analysis: The Application Of Erica To Gefanuc. Com. In Proc. IEEE Systems and Information Design Symposium.
Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21(2), 205-229.
Bonev, B., Chuang, L. L., & Escolano, F. (2013). How do image complexity, task demands and looking biases influence human gaze behavior?. Pattern Recognition Letters, 34(7), 723-730
Campbell, D. J. (1988). Task complexity: A review and analysis. Academy of Management Review, 13(1).
Choi, J. H., & Lee, H.-J. (2012). Facets of simplicity for the smartphone interface: A structural model. International Journal of Human-Computer Studies, 70(2),129-142
Chu, Y., & Huang, L. (2008). Mobile technologies adoption: An exploratory case study. Tsinghua Science & Technology, 13(3), 300-305.
Cui, T., Wang, X., & Teo, H. H. (14 Dec, 2012). Effects of Cultural Cognitive Styles on Users' Evaluation of Website Complexity. Proceeding of ICIS 2012, Human-computer interaction, Orlando, United States.
Cowen, L., Ball, L. J., & Delin, J. (2002). An eye movement analysis of web page usability. In People and Computers XVI-Memorable Yet Invisible (317-335). Springer London.
Crabbe, M., Standing, C., Standing, S., & Karjaluoto, H. (2009). An adoption model for mobile banking in Ghana. International Journal of Mobile Communications, 7(5), 515-543.
Cutrell, E., & Guan, Z. (2007, April). What are you looking for?: an eye-tracking study of information usage in web search. In Proceedings of the SIGCHI conference on Human factors in computing systems, 407-416. ACM.
Cyr, D., Head, M., Larios, H., & Pan, B. (2009). Exploring human images in website design: a multi-method approach. MIS Quarterly, 33(3), 539.
Dabholkar, P. A., & Bagozzi, R. P. (2002). An attitudinal model of technology-based self-service: moderating effects of consumer traits and situational factors. Journal of the Academy of Marketing Science, 30(3), 184-201.
DeLone, W., & McLean, E. (1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3(1), 60-60.
Deng, L., & Poole, M. S. (2010). Affect in web interfaces: a study of the impacts of web page visual complexity and order. MIS Quarterly, 34(4), 711-730.
DeStefano, D., & LeFevre, J. A. (2007). Cognitive load in hypertext reading: A review. Computers in Human Behavior, 23(3), 1616-1641.
Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task–technology fit constructs. Information and Management, 36(1), 9-21.
Ferratt, T. W., & Vlahos, G. E. (1998). An investigation of task-technology fit for managers in Greece and the US. European Journal of Information Systems 7(2), 123-136
Fitts, P. M., Jones, R. E., & Milton, J. L. (1950). Eye movements of aircraft pilots during instrument-landing approaches. Aeronautical Engineering Review 9(2), 24–29.
Folk, J. R., & Morris, R. K. (2003). Effects of syntactic category assignment on lexical
ambiguity resolution in reading: An eye movement analysis. Memory & Cognition,
31(1), 87-99.
Gebauer, J., & Shaw, M. J. (2004). Success factors and impacts of mobile business applications: results from a mobile e-procurement study. International Journal of Electronic Commerce, 8(3), 19-41.
Geissler, G., Zinkhan, G. M., & Watson, R. T. (2001). Web Home Page Complexity and Communication Effectiveness. J. AIS, 2, 0.
Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, N., & Wichansky, A. M. (2002, March). Eye tracking in web search tasks: design implications. In Proceedings of the 2002 symposium on Eye tracking research & applications (51-58). ACM.
Goodhue, D. L. (1995). Understanding user evaluations of information systems. Management science, 41(12), 1827-1844.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS quarterly, 19(2), 213-236.
Hair, J. F., Black W.C., Babin, B., Anderson, R. E., & Tatham, R. L. (2010). Multivariate Data Analysis. Upper Saddle River, NJ: Pearson Education.
Henderson, J. M., & Hollingworth, A. (1998). Eye movements during scene viewing: An overview. Eye guidance in reading and scene perception, 11, 269-293.
Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: conceptual foundations. The Journal of Marketing, 60(3), 50-68.
Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & psychophysics, 57(6), 787-795.
Hong, W., Tam, K. Y., and Yim, C. K. “E-Service Environment:Impacts of Web Interface Characteristics on Consumers’ Online Shopping Behavior,” in E-Service: New Directions in Theory and Practice, R. T. Rust and P. K. Kannan(eds.), M. E. Sharpe, Armonk, NY, 2002, 108-128.
Hsin Chang, H. (2010). Task-technology fit and user acceptance of online auction. International Journal of Human-Computer Studies, 68(1), 69-89.
Igbaria, M., & Tan, M. (1997). The consequences of information technology acceptance on subsequent individual performance. Information & management, 32(3), 113-121.
Jacob, R. J., & Karn, K. S. (2003). Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. Mind, 2(3), 4.
Jiang, Z. J., & Benbasat, I. (2007). The effects of presentation formats and task complexity on online consumers' product understanding. MIS Quarterly, 31(3), 475-475.
Josephson, S., & Holmes, M. E. (2002). Visual attention to repeated Internet images: Testing the scanpath theory on the world wide web. In: Proceedings of the Eye Tracking Research & Applications Symposium 2002, 43–49. New York: ACM.
Kaakinen, J. K., Hyönä, J., & Keenan, J. M. (2002). Perspective effects on online text processing. Discourse Processes, 33(2), 159-173.
Kannan, V. R., & Tan, K. C. (2005). Just in time, total quality management, and supply chain management: understanding their linkages and impact on business performance. Omega, 33(2), 153-162.
Kim, S. H., Dong, Z., Xian, H., Upatising, B., & Yi, J. S. (2012). Does an Eye Tracker Tell the Truth about Visualizations?: Findings while Investigating Visualizations for Decision Making. Visualization and Computer Graphics, IEEE Transactions on, 18(12), 2421-2430
Kline, R. B. (2010). Principles and practice of structural equation modeling. New York: Guilford Press.
Klopping, I. M., & McKinney, E. (2004). Extending the technology acceptance model and the task-technology fit model to consumer e-commerce. Information technology learning and performance journal, 22, 35-48.
Langton, S. R., Watt, R. J., & Bruce, V. (2000). Do the eyes have it? Cues to the direction of social attention. Trends in cognitive sciences, 4(2), 50-59.
Lee, C. C., Cheng, H. K., & Cheng, H. H. (2007). An empirical study of mobile commerce in insurance industry: Task–technology fit and individual differences.Decision Support Systems, 43(1), 95-110.
Leuthold, S., Schmutz, P., Bargas-Avila, J. A., Tuch, A. N., & Opwis, K. (2011). Vertical versus dynamic menus on the world wide web: Eye tracking study measuring the influence of menu design and task complexity on user performance and subjective preference. Computers in human behavior, 27(1), 459-472.
Lin, T. C., & Huang, C. C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information & Management, 45(6), 410-417.
Lin, W.-S. (2012). Perceived fit and satisfaction on web learning performance: IS continuance intention and task-technology fit perspectives. International Journal of Human-Computer Studies, 70(7), 498-507
Liu, Y., Lee, Y., & Chen, A. N. (2011). Evaluating the effects of task–individual–technology fit in multi-DSS models context: A two-phase view. Decision Support Systems, 51(3), 688-700.
Mathieson, K., & Keil, M. (1998). Beyond the interface: Ease of use and task/technology fit. Information & Management, 34(4), 221-230.
Matthing, J., Kristensson, P., Gustafsson, A., & Parasuraman, A. (2006). Developing successful technology-based services: the issue of identifying and involving innovative users. Journal of Services Marketing, 20(5), 288-297.
Michailidou, E. (2005). Metrics of visual complexity.Unpublished master’s thesis, University of Manchester, UK.
Morris, M. G., &Venkatesh, V.(2000). Why don't men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS quarterly, 115-139.
Nadkarni, S., & Gupta, R. (2007). A task-based model of perceived website complexity. MIS Quarterly, 31(3), 501-524.
Närman, P., Holm, H., Höök, D., Honeth, N., & Johnson, P. (2012). Using enterprise architecture and technology adoption models to predict application usage. Journal of Systems and Software, 85(8), 1953-1967.
Newman, M. W., & Landay, J. A. (2000, August). Sitemaps, storyboards, and specifications: a sketch of Web site design practice. In Proceedings of the 3rd conference on Designing interactive systems: processes, practices, methods, and techniques , 263-274. ACM.
Ngo, D. C. L., Teo, L. S., & Byrne, J. G. (2003). Modelling interface aesthetics. Information Sciences, 152, 25-46.
Novak, T. P., Hoffman, D. L., & Duhachek, A. (2003). The influence of goal-directed and experiential activities on online flow experiences. Journal of consumer psychology, 13(1), 3-16.
Nunnally, J. C., Bernstein, I. H., & Berge, J. M. T. (1967). Psychometric theory(Vol. 226). New York: McGraw-Hill.
Palmer, J. W. (2002). Web site usability, design, and performance metrics. Information systems research, 13(2), 151-167.
Pandir, M., & Knight, J. (2006). Homepage aesthetics: The search for preference factors and the challenges of subjectivity. Interacting with Computers, 18(6), 1351-1370.
Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307-320.
Parkes, A. (2012). The effect of task-individual-technology fit on user attitude and performance: An experimental investigation. Decision Support Systems.
Pieters, R., Warlop, L., & Wedel, M. (2002). Breaking through the clutter: Benefits of advertisement originality and familiarity for brand attention and memory. Management Science, 48(6), 765-781.
Porter, C. E., & Donthu, N. (2008). Cultivating trust and harvesting value in virtual communities. Management Science, 54(1), 113-128.
Poynter, W., Barber, M., Inman, J., & Wiggins, C. (2013). Individuals exhibit idiosyncratic eye-movement behavior profiles across tasks. Vision research, 89, 32-38.
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372.
Rosipal, R., &Krämer, N. (2006).Overview and recent advances in partial least squares. In Subspace, Latent Structure and Feature Selection, 34-51. Springer Berlin Heidelberg.
Sanders, M.S. and McCormick, E.J. (1993), Human Factors in Engineering and Design, 7th ed., New York: McGraw-Hill.
Sarkar, M. B., Echambadi, R.A.J.,& Harrison, J.S. (2001) Alliance entrepreneurship and firm market performance. Strategic Management Journal, 22(6), 701-711
Sarker, S., & Valacich, J. S. (2010). An alternative to methodological individualism: A non-reductionist approach to studying technology adoption by groups. MIS Quarterly, 34(4), 779-808.
Schlosser, A. E. (2003). Experiencing products in the virtual world: the role of goal and imagery in influencing attitudes versus purchase intentions. Journal of consumer research, 30(2), 184-198.
Singh, S. N., & Dalal, N. P. (1999). Web home pages as advertisements. Communications of the ACM, 42(8), 91-98.
Steinmann, D. O. (1976). The effects of cognitive feedback and task complexity in multiple-cue probability learning. Organizational Behavior and Human Performance, 15(2), 168-179.
Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity: Prospects and paradigms. Handbook of creativity, 1, 3-15.
Stevenson, J. S. (2000). Webpage background and viewer attitudes. Journal of Advertising Research, 40(1/2), 29.
Suh, K. S. (1999). Impact of communication medium on task performance and satisfaction: an examination of media-richness theory. Information & Management, 35(5), 295-312.
Tayie, S. (2005). Research methods and writing research proposals. Pathways to Higher Education.
Te'eni, D., & Feldman, R. (2001). Performance And Satisfaction In Adaptive Websites: An Experiment On Searches Within A Task-Adapted Website. J. AIS, 2, 0.
Tsikriktsis, N. (2004). A Technology Readiness-Based Taxonomy of Customers A Replication and Extension. Journal of Service Research, 7(1), 42-52.
Tuch, A. N., Bargas-Avila, J. A., Opwis, K., & Wilhelm, F. H. (2009). Visual complexity of websites: Effects on users’ experience, physiology, performance, and memory. International Journal of Human-Computer Studies, 67(9), 703-715.
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, 11(4), 342-365.
Venkatesh, V., Ramesh, V., & Massey, A. P. (2003). Understanding usability in mobile commerce. Communications of the ACM, 46(12), 53-56.
Vessey, I. (1991). Cognitive fit: An empirical study of information acquisition. Information Systems Research, 2(1), 63.
Williams, L. M., Loughland, C. M., Green, M. J., Harris, A. W., & Gordon, E. (2003). Emotion perception in schizophrenia: an eye movement study comparing the effectiveness of risperidone vs. haloperidol. Psychiatry research, 120(1), 13-27.
Wolfinbarger, M., & Gilly, M. C. (2001). Shopping online for freedom, control, and fun. California Management Review, 43(2), 34-55.
Wood, R. E. (1986). Task complexity: Definition of the construct. Organizational Behavior and Human Decision Processes, 37(1), 60-82.
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.
Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision Support Systems, 54(2), 1085-1091.
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-01起公開。

  • 如您有疑問,請聯絡圖書館