進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2507201414212400
論文名稱(中文) 知覺網站複雜度與任務科技適配對網站使用者滿意度之影響:以眼動實驗及問卷方法進行研究
論文名稱(英文) The effects of website complexities and task-technology fit on website user satisfaction: An experimental design using eye-tracking devices and survey
校院名稱 成功大學
系所名稱(中) 資訊管理研究所
系所名稱(英) Institute of Information Management
學年度 102
學期 2
出版年 103
研究生(中文) 魏于庭
研究生(英文) Yu-Ting Wei
學號 R76011147
學位類別 碩士
語文別 中文
論文頁數 91頁
口試委員 口試委員-陳正忠
口試委員-林彣珊
指導教授-王維聰
中文關鍵字 知覺網站複雜度  眼動追蹤  任務科技配適理論  滿意度 
英文關鍵字 Perceived website complexity  Eye tracking  Task-Technology Fit  Satisfaction 
學科別分類
中文摘要 近幾年網頁設計技術逐漸成熟,如何提供給消費者一個流暢的網頁對於網頁內容提供者將是很大的挑戰,本研究將知覺網站複雜度分為三個面向:成分、協調、動態,將以這三個複雜度了解網站複雜的介面如何影響網站上訪客瀏覽滿意度。再搭配任務科技配適模型,探討在不同任務模式下知覺網站複雜度與使用者熟悉度對於任務科技配適程度對於使用者滿意度是否會有影響。本研究針對知覺網站複雜度加入眼動儀實驗,希望利用眼動追蹤提供的眼動資料,了解不同複雜度之網頁對於觀看者知覺行為之影響。期望將研究結果提供網站開發商及其他相關開發商作為網站開發上的參考。
本研究目標型收集30位受試者眼動資料,回收325份有效問卷,透過結構方程式(SEM)進行資料分析,研究結果發現使用者熟悉度對任務科技配適有正向影響,知覺成分複雜對任務科技配適則無顯著關係,知覺協調、動態複雜對任務科技配適有負向關係,任務模式在知覺成分、協調複雜度與任務科技配適間無顯著關係。在眼動實驗中,目標型任務下,知覺高低成分複雜度,眼動指標AOI的凝視比率&觀看時間、平均掃視距離、完成任務時間皆有顯著不同;知覺協調複雜度,眼動指標平均掃視距離、頁面跳動次數、完成任務花費時間皆有顯著不同;知覺動態複雜度,平均掃視距離、頁面跳動次數、AOI凝視比率、AOI觀看時間比率、文字觀看時間比率皆有顯著不同。本研究中結果也證實,在三個複雜度中,知覺動態複雜度是影響使用者瀏覽網站行為的最大因素。
英文摘要 Most website usage studies typically adopt questionnaire surveys, but sometimes users can’t express their real thoughts in a questionnaire survey. Therefore, in this study, an eye tracking method and questionnaire survey are used simultaneously.
Prior studies discussing websites have mainly focused on their design. However, other than focusing on the design of websites, there are some other factors that must be taken into consideration. This study explores websites through personal features as well as technological characteristics and the task type used in the website technology. In the case of websites, a user friendly interface will be a key factor related to whether a user can easily use a website. This study uses perceived website complexity, along with task-technology fit theory, to explore user satisfaction of a website.
Based on 378 questionnaires filled out by website users, this study applied PLS (partial least-squares) to investigate the proposed model. The results indicate that user familiarity has a positive influence on task-technology fit; perceived dynamic complexity negatively influences task-technology fit; perceived coordinative complexity negatively influences task-technology fit, and task technology fit has a positive influence on user satisfaction. In the eye-tracking part of the experiment, several key eye-movements are identified that distinguish perceived component complexity, perceived coordinative complexity and perceived dynamic complexity at high or low levels. The results indicate that use of websites is not only influenced by technology, but is also significantly impacted by individual characteristics. The research results can provide a practical reference for website service providers.
論文目次 摘要 I
Abstract II
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究範圍與限制 2
第四節 研究流程 3
第二章 文獻探討 5
第一節 知覺網站複雜度(Perceived website complexity) 5
第二節 使用者熟悉度(User Familiarity) 6
第三節 任務模式 7
第四節 任務科技配適模型(Task-Technology Fit, TTF) 7
2.4.1 任務科技配適模型過去研究方向 7
2.4.2 科技績效鏈(Technology to Performance Chain, TPC) 9
2.4.3 使用任務科技配適理論之研究 10
2.4.4 任務科技配適理論構面 11
第五節 使用者滿意度 15
第六節 眼動儀實驗方法 15
2.6.1 眼動指標介紹 16
2.6.2 眼動儀分析辦法 17
第三章 實驗規劃與研究方法 19
第一節 研究模型 19
第二節 研究假說 20
3.2.1 使用者熟悉度與任務科技配適 20
3.2.2 知覺網站複雜度與任務科技配適度 20
3.2.3 任務模式與知覺網站複雜度與任務科技配適度 21
3.2.4 任務科技配適度與滿意度 22
第三節 眼動儀實驗設計 23
3.3.1 實驗設計 23
3.3.2 實驗流程 25
3.3.3 實驗刺激物設計 27
3.3.4 操弄檢定 34
3.3.5 實驗對象 34
3.3.6 實驗儀器設備 34
第四節 問卷設計 35
3.4.1 使用者熟悉度問項 36
3.4.2 知覺網站複雜度問項 36
3.4.3 任務模式問項 37
3.4.4 任務科技配適度問項 38
3.4.5 滿意度問項 38
第五節 資料分析方法 39
3.5.1 問卷前測 39
3.5.2 問卷資料分析方法 43
3.5.3 眼動資料分析方法 45
第四章 資料分析與結果 48
第一節 敘述性統計 48
4.1.1 問卷回收概狀 48
4.1.2 基本資料敘述性統計 48
4.1.3 研究變項敘述性統計 49
4.1.4 研究變項常態性檢定 52
第二節 信度分析 54
第三節 相關分析 56
第四節 衡量模型 57
4.4.1 收斂效度分析 57
4.4.2 區別效度分析 59
第五節 結構模型 60
4.5.1 路徑分析與假說檢定 60
第六節 調節效果驗證 61
第七節 小節 64
第八節 眼動資料分析 65
4.8.1 受測者基本資料 65
4.8.2 知覺成分複雜度指標分析 65
4.8.3 知覺協調複雜度指標分析 66
4.8.4 知覺動態複雜度指標分析 67
第五章 結論與建議 70
第一節 研究發現與結論 70
第二節 研究貢獻 72
第三節 研究限制與未來研究方向 73
參考文獻 75
附錄一 前測問卷 80
附錄二 正式問卷 86
參考文獻 Agarwal, R., & Venkatesh, V. (2002). Assessing a firm's web presence: a heuristic evaluation procedure for the measurement of usability. Information Systems Research, 13(2), 168-186.

Aiken, L. S., West, S. G., & Reno, R. R.(1991). Multiple Regression: Testing and Interpreting Interations. Thousand Oaks, CA: Sage Publications

Bagozzi, R. P., & Yi, Y. (1988).On the evaluation of structural equationmodels.Journal of the academy of marketing science, 16(1), 74-94.

Bailey, J. E., & Pearson, S. W. (1983). Development of a tool for measuring and analyzing computer user satisfaction. Management science, 29(5), 530-545.

Barber, H., Janes, I., and Boyland, M. (2004), "The full picture: Using eye-tracking to make website design more effective," World Association of Research Professional,ESOMAR, 1-15.

Baxter, M. (1995), Product Design-Practical Methods for the Systematic Development of New Product, London: Chapman and Hall

Benbasat, I., Dexter, A. S., & Todd, P. (1986). An experimental program investigating color-enhanced and graphical information presentation: an integration of the findings. Communicatiom of fhe ACM 29(11), 1094-1105.

Berlyne, D. E. (1970). Novelty, complexity, and hedonic value. Perception & Psychophysics, 8(5), 279-286.

Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21(2), 205-229.

Bonev, B., Chuang, L. L., & Escolano, F. (2013). How do image complexity, task demands and looking biases influence human gaze behavior? Pattern Recognition Letters, 34(7), 723-730

Campbell, D. J. (1988). Task complexity: A review and analysis. Academy of Management Review, 13(1).

Choi, J. H., & Lee, H.-J. (2012). Facets of simplicity for the smartphone interface: A structural model. International Journal of Human-Computer Studies, 70(2),129-142.

Chu, Y., & Huang, L. (2008). Mobile technologies adoption: An exploratory case study. Tsinghua Science & Technology, 13(3), 300-305.

Cui, T., Wang, X., & Teo, H. H. (14 Dec, 2012). Effects of Cultural Cognitive Styles on Users' Evaluation of Website Complexity. Proceeding of ICIS 2012, Human-computer interaction, Orlando, United States.

Cowen, L., Ball, L. J., & Delin, J. (2002). An eye movement analysis of web page usability. In People and Computers XVI-Memorable Yet Invisible (317-335). Springer London.

Cox, D., & Cox, A. D. (2002). Beyond first impressions: The effects of repeated exposure on consumer liking of visually complex and simple product designs. Journal of the Academy of Marketing Science, 30(2), 119-130.

Cox, D. S., & Cox, A. D. (1988). What does familiarity breed? Complexity as a moderator of repetition effects in advertisement evaluation. Journal of Consumer Research, 15(1), 111-116.

Crabbe, M., Standing, C., Standing, S., & Karjaluoto, H. (2009). An adoption model for mobile banking in Ghana. International Journal of Mobile Communications, 7(5), 515-543.

Cutrell, E., & Guan, Z. (2007, April). What are you looking for?: an eye-tracking study of information usage in web search. In Proceedings of the SIGCHI conference on Human factors in computing systems, 407-416. ACM.

Cyr, D., Head, M., Larios, H., & Pan, B. (2009). Exploring human images in website design: a multi-method approach. MIS Quarterly, 33(3), 539.

DeLone, W., & McLean, E. (1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3(1), 60-60.

Deng, L., & Poole, M. S. (2010). Affect in web interfaces: a study of the impacts of web page visual complexity and order. MIS Quarterly, 34(4), 711-730.

DeStefano, D., & LeFevre, J. A. (2007). Cognitive load in hypertext reading: A review. Computers in Human Behavior, 23(3), 1616-1641.

Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task–technology fit constructs. Information and Management, 36(1), 9-21.

Flavián, C., Guinalíu, M., & Gurrea, R. (2006). The role played by perceived usability, satisfaction and consumer trust on website loyalty. Information & Management, 43(1), 1-14.

Folk, J. R., & Morris, R. K. (2003). Effects of syntactic category assignment on lexical ambiguity resolution in reading: An eye movement analysis. Memory & Cognition, 31(1), 87-99.

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: an integrated model. MIS quarterly, 27(1), 51-90.

Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, N., & Wichansky, A. M. (2002, March). Eye tracking in web search tasks: design implications. In Proceedings of the 2002 symposium on Eye tracking research & applications (51-58). ACM.

Goodhue, D. L. (1995). Understanding user evaluations of information systems. Management science, 41(12), 1827-1844.

Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS quarterly, 19(2), 213-236.

Hair, J. F., Black W.C., Babin, B., Anderson, R. E., & Tatham, R. L. (2010). Multivariate Data Analysis. Upper Saddle River, NJ: Pearson Education.

Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: conceptual foundations. The Journal of Marketing, 60(3), 50-68.

Hong, W., Tam, K. Y., and Yim, C. K. “E-Service Environment:Impacts of Web Interface Characteristics on Consumers’ Online Shopping Behavior,” in E-Service: New Directions in Theory and Practice, R. T. Rust and P. K.

Kannan (eds.), M. E. Sharpe, Armonk, NY, 2002, 108-128.

Hsin Chang, H. (2010). Task-technology fit and user acceptance of online auction. International Journal of Human-Computer Studies, 68(1), 69-89.

Igbaria, M., & Tan, M. (1997). The consequences of information technology acceptance on subsequent individual performance. Information & management, 32(3), 113-121.

Jacob, R. J., & Karn, K. S. (2003). Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. Mind, 2(3), 4.

Jiang, Z. J., & Benbasat, I. (2007). The effects of presentation formats and task complexity on online consumers' product understanding. MIS Quarterly, 31(3), 475-475.

Josephson, S., & Holmes, M. E. (2002). Visual attention to repeated Internet images: Testing the scanpath theory on the world wide web. In: Proceedings of the Eye Tracking Research & Applications Symposium 2002, 43–49. New York: ACM.

Kaakinen, J. K., Hyönä, J., & Keenan, J. M. (2002). Perspective effects on online text processing. Discourse Processes, 33(2), 159-173.

Kannan, V. R., & Tan, K. C. (2005). Just in time, total quality management, and supply chain management: understanding their linkages and impact on business performance. Omega, 33(2), 153-162.

Kim, S. H., Dong, Z., Xian, H., Upatising, B., & Yi, J. S. (2012). Does an Eye Tracker Tell the Truth about Visualizations?: Findings while Investigating Visualizations for Decision Making. Visualization and Computer Graphics, IEEE Transactions on, 18(12), 2421-2430

Kline, R. B. (2010). Principles and practice of structural equation modeling. New York: Guilford Press.

Klopping, I. M., & McKinney, E. (2004). Extending the technology acceptance model and the task-technology fit model to consumer e-commerce. Information technology learning and performance journal, 22, 35-48.

Komiak, S. Y., & Benbasat, I. (2006). The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS Quarterly, 30(4), 941-960.

Lee, C. C., Cheng, H. K., & Cheng, H. H. (2007). An empirical study of mobile commerce in insurance industry: Task–technology fit and individual differences.Decision Support Systems, 43(1), 95-110.

Leuthold, S., Schmutz, P., Bargas-Avila, J. A., Tuch, A. N., & Opwis, K. (2011). Vertical versus dynamic menus on the world wide web: Eye tracking study measuring the influence of menu design and task complexity on user performance and subjective preference. Computers in human behavior, 27(1), 459-472.

Lin, T. C., & Huang, C. C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information & Management, 45(6), 410-417.

Lin, W.-S. (2012). Perceived fit and satisfaction on web learning performance: IS continuance intention and task-technology fit perspectives. International Journal of Human-Computer Studies, 70(7), 498-507

Liu, Y., Lee, Y., & Chen, A. N. (2011). Evaluating the effects of task–individual–technology fit in multi-DSS models context: A two-phase view. Decision Support Systems, 51(3), 688-700.

Loftus, G. R., & Mackworth, N. H. (1978). Cognitive determinants of fixation location during picture viewing. Journal of Experimental Psychology: Human perception and performance, 4(4), 565.

Mathieson, K., & Keil, M. (1998). Beyond the interface: Ease of use and task/technology fit. Information & Management, 34(4), 221-230.

Matthing, J., Kristensson, P., Gustafsson, A., & Parasuraman, A. (2006). Developing successful technology-based services: the issue of identifying and involving innovative users. Journal of Services Marketing, 20(5), 288-297.

Michailidou, E., Harper, S., & Bechhofer, S. (2008, September). Visual complexity and
aesthetic perception of web pages. In Proceedings of the 26th annual ACM international conference on Design of communication, 215-224. ACM.

Nadkarni, S., & Gupta, R. (2007). A task-based model of perceived website complexity. MIS Quarterly, 31(3), 501-524.

Newman, M. W., & Landay, J. A. (2000, August). Sitemaps, storyboards, and specifications: a sketch of Web site design practice. In Proceedings of the 3rd conference on Designing interactive systems: processes, practices, methods, and techniques , 263-274. ACM.

Ngo, D. C. L., Teo, L. S., & Byrne, J. G. (2003). Modelling interface aesthetics. Information Sciences, 152, 25-46.

Novak, T. P., Hoffman, D. L., & Duhachek, A. (2003). The influence of goal-directed and experiential activities on online flow experiences. Journal of consumer psychology, 13(1), 3-16.

Nunnally, J. C., Bernstein, I. H., & Berge, J. M. T. (1967). Psychometric theory(Vol. 226).
New York: McGraw-Hill.
Palmer, J. W. (2002). Web site usability, design, and performance metrics. Information systems research, 13(2), 151-167.

Pandir, M., & Knight, J. (2006). Homepage aesthetics: The search for preference factors and the challenges of subjectivity. Interacting with Computers, 18(6), 1351-1370.

Porter, C. E., & Donthu, N. (2008). Cultivating trust and harvesting value in virtual communities. Management Science, 54(1), 113-128.

Poynter, W., Barber, M., Inman, J., & Wiggins, C. (2013). Individuals Exhibit Idiosyncratic Eye-movement Behavior Profiles Across Tasks. Vision research

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372.

Rosipal, R., &Krämer, N. (2006).Overview and recent advances in partial least squares. In Subspace, Latent Structure and Feature Selection, 34-51. Springer Berlin Heidelberg.

Sanders, M.S. and McCormick, E.J. (1993), Human Factors in Engineering and Design, 7th ed., New York: McGraw-Hill.

Sarkar, M. B., Echambadi, R.A.J.,& Harrison, J.S. (2001) Alliance entrepreneurship and firm market performance. Strategic Management Journal, 22(6), 701-711

Sarker, S., & Valacich, J. S. (2010). An alternative to methodological individualism: A non-reductionist approach to studying technology adoption by groups. MIS Quarterly, 34(4), 779-808.

Schlosser, A. E. (2003). Experiencing products in the virtual world: the role of goal and imagery in influencing attitudes versus purchase intentions. Journal of consumer research, 30(2), 184-198.

Selz, D., & Schubert, P. (1998, January). Web assessment-a model for the evaluation and the assessment of successful electronic commerce applications. In System Sciences, 1998., Proceedings of the Thirty-First Hawaii International Conference on (Vol. 4, 222-231). IEEE.

Shneiderman, B. (1998).Designing the User Interface: Strategies for Effective Human-Computer Interaction, 3rd ed., Addison-Wesley, Reading, MA,

Singh, S. N., & Dalal, N. P. (1999). Web home pages as advertisements. Communications of the ACM, 42(8), 91-98.

Steinmann, D. O. (1976). The effects of cognitive feedback and task complexity in multiple-cue probability learning. Organizational Behavior and Human Performance, 15(2), 168-179.

Suh, K. S. (1999). Impact of communication medium on task performance and satisfaction: an examination of media-richness theory. Information & Management, 35(5), 295-312.
Tayie, S. (2005). Research methods and writing research proposals. Pathways to Higher Education.

Te'eni, D., & Feldman, R. (2001). Performance And Satisfaction In Adaptive Websites: An Experiment On Searches Within A Task-Adapted Website. J. AIS, 2, 0.

Tuch, A. N., Bargas-Avila, J. A., Opwis, K., & Wilhelm, F. H. (2009). Visual complexity of websites: Effects on users’ experience, physiology, performance, and memory. International Journal of Human-Computer Studies, 67(9), 703-715.

Tzanidou, E. (2003). Eye tracking as a complementary usability evaluation technique for e-commerce sites. In the Proceedings of the workshop on'Exploring The Total Customer Experience (TCE): Usability Evaluations of (B2B) E-Commerce Environments' held at INTERACT 2003.

Vessey, I. (1991). Cognitive fit: An empirical study of information acquisition. Information Systems Research, 2(1), 63.

Wolfinbarger, M., & Gilly, M. C. (2001). Shopping online for freedom, control, and fun. California Management Review, 43(2), 34-55.

Wood, R. E. (1986). Task complexity: Definition of the construct. Organizational Behavior and Human Decision Processes, 37(1), 60-82.

Yarbus, A. L. (1967). Eye movements and vision (Vol. 2, No. 5.10). L. A. Rigss (Ed.). New York: Plenum press.

Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw