進階搜尋


 
系統識別號 U0026-2507201413425700
論文名稱(中文) 有機二極體元件之磁電導響應
論文名稱(英文) Magnetoconductance responses in organic diodes
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 2
出版年 103
研究生(中文) 黃偉順
研究生(英文) Wei-Shun Huang
學號 L78991063
學位類別 博士
語文別 英文
論文頁數 87頁
口試委員 指導教授-郭宗枋
口試委員-溫添進
召集委員-黃榮俊
口試委員-許瑤真
口試委員-陳方中
口試委員-張世慧
中文關鍵字 有機二極體  磁電導  五環素  碳六十  電荷轉移複合態 
英文關鍵字 organic semiconductor  magnetoresistance  magnetoconductance  magnetic photocurrent  magnetic field effect  charge transfer complex state  pentacene 
學科別分類
中文摘要 本篇論文研究有機二極體(organic diode)元件之磁電導響應(magnetoconductance)。有機二極體的磁電導響應一般與激發態的形成有關,由於激發態的一些光物理特性,包括激發子激發子交互作用(exciton-exciton interaction)、激發子載子交互作用(exciton-charge interaction)與解離(dissociation)等,皆與外加磁場有關,有機二極體的磁電導產生有相當複雜的成因。目前,我們可以說任何有關於激發態生成的原因皆有可能貢獻到磁電導響應的生成。本論文內容,使用兩種實驗上的手法來討論有機五環素(pentacene)二極體元件的磁電導響應,包括:摻混高電子親和力(high electron affinity)材料於五環素中用以誘導產生電荷轉移複合態(charge transfer complex state),以及混入碳六十(fullerene)產生給體/受體(donor/acceptor)異質介面與介面電場(interfacial electric field)。其中,高電子親和力材料的使用是為了討論單載子(single carrier)傳輸所產生的負磁電導響應,而碳六十本身具備良好的電子傳輸能力,主要用來討論光電流的磁電導響應。
英文摘要 This thesis investigated magnetoconductance (MC) responses in organic diodes. MC responses in organic diodes commonly relate to the formation of excited states. Since some of the photo-physical properties of excited states have strong dependences with applied magnetic field, including exciton-exciton interaction, exciton-charge interaction, and dissociation, MC responses in organic diodes could be very complicated. Everything proposed possibly contribute to the observed MC response. In this thesis, two ways to identify the MC response in pentacene-based organic diodes are proposed. Those are inducing charge transfer complex states (CT complex states) in pentacene diodes by blending 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) into pentacene and creating a donor/ acceptor interface as well as an interfacial electric field in pentacene-based diodes by introducing fullerene into pentacene. F4-TCNQ is used to study the MC response of the pentacene diode under charge injection regime. Fullerene is especially used to investigate the MC under photocurrent owing to fullerene provides good electrical properties on charge transport. Brief descriptions about the researches in this thesis (Chapter 4, 5, and 6) are showed in the following.
In chapter 4, we investigate the MC responses in photocurrent, unipolar injection, and bipolar injection regimes in pentacene-based diodes. Both photocurrent and bipolar injection contributed MC responses show large difference in MC line shape, which are attributed to triplet-polaron interaction (TPI) modulated by the magnetic field dependent singlet fission and the intersystem crossing (ISC) of the polaron pair, respectively. By blending F4-TCNQ into pentacene, all the MC responses are suppressed but the MC response at unipolar injection regime is enhanced, which is attributed to the induced CT complex states. This work successively identify the MC responses between single carrier contributed MC and exciton related MC by the induced CT complex states.
The work in chapter 5 investigates a distinct low-field negative MC response under illumination in pentacene:fullerene diodes. The low-field negative MC response is attributed to a triplet polaron pair ((PP)3) charge reaction associated with the hyperfine interaction. Applying a magnetic field can reduce the intensity of the reaction causing the negative MC response. Additionally, the low-field negative MC response changes with the blending ratios of fullerene in pentacene active layer, the applied bias voltages, and applying device structure with bulk heterojucntion (BHJ) or planar heterojunction (PHJ) configuration, because the modulations of the internal electric field. Consequently, the results indicate that the (PP)3 charge reaction induces the low-field negative MC, which is correlated with the local hyperfine field, external magnetic field, and electric field.
In chapter 6, the work investigates that the applied electric field modulates the line shapes of MC responses in pentacene:fullerene diodes under illumination. We attribute the line shapes of MC curves herein are correlated with the strength of Columbic interaction of opposite charges in CT complexes. Applying the reversed bias increases the built-in electric field (Ebuilt-in) of the diodes to offset the exchange interaction of CT complexes and narrows the line shapes of MC responses. The saturation field of MC curves in pentacene:fullerene diodes is 752 Oe when the device is biased at 0.4 V and decreases to 212 Oe at a reversed bias of -1.0 V. The line shapes of MC curves for the diode made of pristine pentacene or fullerene as the active layer show a marginal effect by the applied bias. Our results indicate the correlations of MC responses with the exchange interaction of CT complexes as modulated by the applied electric field.
論文目次 Contents
中文摘要 I
Abstract III
Acknowledgments V
List of Figures XI
1 Introduction 1
1.1 Brief Introduction to Organic Semiconductors 1
1.2 Applications on Spintronics 1
1.3 Development of Organic Spintronics 2
1.3.1 Spin Transport in Organic Semiconductors 3
1.3.2 Magnetic Field Effects (MFEs) in Organic Semiconductors
7
1.3.2.1 Magnetoconductance (MC) in Organic Diodes 9
1.3.2.2 Magentoelectroluminescence (MEL) in Organic Light-emitting Diodes 10
1.3.2.3 Magnetic Photocurrent (MPC) in Organic Photovoltaics
12
1.4 Motivation 13
1.5 Scope of the Researches in this Thesis 14
2 Theoretical Background 17
2.1 Excited States Related to Organic MFEs 17
2.2 Excitonic Models in Organic MFEs 18
2.2.1 Magnetic Field Modulated Intersystem Crossing (ISC(B))
18
2.2.2 Singlet Fission and Triplet Fusion in Organic Molecules 19
2.2.3 MC Responses Relative to the Singlet Polaron Pair Dissociation
21
2.2.4 MC Responses Relative to the Triplet Exciton Charge Reaction
23
2.2.5 MC Responses Relative to the Triplet Polaron Interaction (TPI)
24
2.2.6 Magnetic Field Modulated Carrier Mobility or Carrier
Concentration 26
2.3 Bipolaron Model in Single Carrier Devices 27
2.4 Internal Magnetic Fields and Interactions Related to Organic MFEs 29
2.4.1 Spin-orbital Interaction (SOI) 29
2.4.2 Hyperfine Interaction (HFI) 31
2.4.3 Zeeman Effect 32
2.4.4 Exchange Interaction 34
3 Experimental Techniques 35
3.1 Device Fabrication 35
3.2 Measurement Setups 36
3.3 Line Shape Measurements 38
4 Identifying MC Components in Pentacene-based Diodes 43
4.1 Introduction to MC Components in Organic Diodes 43
4.2 Variation on Electrical Properties and MC Responses by Blending F4-TCNQ into Pentacene 45
4.3 Reduction of the Conductance in Pentacene:F4-TCNQ Diodes 47
4.4 Sign Inversion of the MC Response in Charge Injection Regime and MC Components in Photocurrent Regime 48
4.5 Function of F4-TCNQ on the Low-field Negative MC Response in Charge Injection Regime 49
4.6 Summary 53
5 Manipulating Positive and Negative MC Components in Pentacene:fullerene Heterojunction Devices by Introducing Interfacial and Built-in Electric Fields 55
5.1 Introduction to Low-field Negative MC Components in Organic Diodes
55
5.2 Triplet Polaron Pair Charge Reaction Induced Low-field Negative MC Response 56
5.3 Interfacial Electric Field Modulated Positive and Negative MC Responses 58
5.4 Suppression of the Low-field Negative MC Response Induced by Triplet Polaron Pair Charge Reaction under a Stronger Built-in Electric Field 60
5.5 Summary 63
6 Modulations in Line Shapes of Magnetoconductance Curves for Diodes of Pentacene:fullerene Charge Transfer Complexes 65
6.1 Introduction to the Correlation between Line Shapes of the MC and Internal Magnetic Fields (or Interactions) 65
6.2 Line shape narrowing of the MC response in pentacene:fullerene BHJ devices 66
6.3 Built-in Electric Field Modulated Electron-hole Separation Distance as well as Exchange Interaction 68
6.4 Reduction on the Saturation Field of the Positive MC Response by Modulating the Exchange Interaction 72
6.5 Summary 74
7 Conclusions about this Thesis and Outlook 75
Reference 77
Curriculum Vitae 87
List of Publication 87
參考文獻 [1] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis,
S. C. Gau, and A. G. Macdiarmid, “Electrical Conductivity in Doped Polyacetylene”, Phys. Rev. Lett. 39, 1098 (1977).
[2] A. Köhler, J. S. Wilson, and R. H. Friend, “Fluorescence and Phosphorescence in Organic Materials”, Adv. Mater. 14, 701 (2002).
[3] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. C. Bradley, D. A. Dos Santos, J. L. Bre das, M. LoÈ gdlund, and W. R. Salaneck, “Electroluminescence in Conjugated Polymers”, Nature 397, 121 (1999).
[4] M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, K. J. Hummelen,
and P. W. M. Blom, “Fullerene Bisadducts for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells”, Adv. Mater. 20, 2116 (2008).
[5] D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High Photovoltaic Performance of a Low-Bandgap Polymer”, Adv. Mater. 18, 2884 (2006).
[6] D. Braga and G. Horowitz, “High-Performance Organic Field-Effect Transistors”, Adv. Mater. 21, 1473 (2009).
[7] J. Cornil, Jean-Luc Brédas, J. Zaumseil, and H. Sirringhaus, “Ambipolar Transport in Organic Conjugated Materials”, Adv. Mater. 19, 1791 (2007).
[8] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Phys. Rev. Lett. 61, 2472 (1988).
[9] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, “Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange”, Phys. Rev. B 39, 4828(R) (1989).
[10] P. Grunberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, “Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers”, Phys. Rev. Lett. 57, 2442 (1986).
[11] M. Julliere, “Tunneling between Ferromagnetic Films”, Phys. Lett. A 54, 225 (1975).
[12] T. Miyazaki and N. Tezuka, “Giant Magnetic Tunneling Effect in Fe/Al2O3/Fe Junction”, J. Magn. Magn. Mater. 139, L231 (1995).
[13] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, “Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions”, Phys. Rev. Lett. 74, 3273 (1995).
[14] D. C. Ralph and M. D. Stiles, “Spin Transfer Torques”, J. Magn. Magn. Mater. 320, 1190 (2008).
[15] Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, ”Giant Magnetoresistance in Organic Spin-valves”, Nature 427, 821 (2004).
[16] Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Köhler, M. K. Al-Suti, and M. S. Khan, “Large Magnetoresistance in Nonmagnetic π-Conjugated Semiconductor Thin Film Devices”, Phys. Rev. B 72, 205202 (2005).
[17] V. Prigodin, J. Bergeson, D. Lincoln, and A. Epstein, “Anomalous Room Temperature Magnetoresistance in Organic Semiconductors”, Synth. Met. 156, 757 (2006).
[18] P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, “Magnetoresistance in Organic Light-emitting Diode Structures under Illumination”, Phys. Rev. B 76, 235202 (2007).
[19] Z. Xu, Y. Wu, and B. Hu, “Dissociation Processes of Singlet and Triplet Excitons in Organic Photovoltaic Cells”, Appl. Phys. Lett. 89, 131116 (2006).
[20] P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, “Bipolaron Mechanism for Organic Magnetoresistance”, Phys. Rev. Lett. 99, 216801 (2007).
[21] F. J. Wang, H. Bässler, and Z. V. Vardeny, “Magnetic Field Effects in π-Conjugated Polymer-Fullerene Blends: Evidence for Multiple Components”, Phys. Rev. Lett. 101, 236805 (2008).
[22] V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani, and S. Barbanera, “Room Temperature Spin Polarized Injection in Organic Semiconductor”, Solid State Commun. 122, 181 (2002).
[23] C. Barraud, P. Seneor, Richard Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff, and A. Fert, “Unravelling the Role of the Interface for Spin Injection into Organic Semiconductors”, Nature Physics 6, 615 (2010).
[24] L. Schulz, L. Nuccio, M.Willis, P. Desai, P. Shakya, T. Kreouzis, V. K. Malik, C. Bernhard, F. L. Pratt, N. A. Morley, A. Suter, G. J. Nieuwenhuys, T. Prokscha, E. Morenzoni, W. P. Gillin, and A. J. Drew, “Engineering Spin Propagation Across a Hybrid Organic/inorganic Interface using a Polar Layer”, Nature Materials 10, 39 (2011).
[25] D. Sun, M. Fang, X. Xu, L. Jiang, H. Guo, Y. Wang, W. Yang, L. Yin, P. C. Snijders, T. Z. Ward, Z. Gai, X.-G. Zhang, H. N. Lee, and J. Shen, “Active Control of Magnetoresistance of Organic Spin Valves Using Ferroelectricity”, arXiv:1304.2446.
[26] T. D. Nguyen, G. Hukic-Markosian, F. Wang, L. Wojcik, X.-G. Li, E. Ehrenfreund, and Z. V. Vardeny, “Isotope Effect in Spin Response of π-Conjugated Polymer Films and Devices”, Nature Materials 9, 345 (2010).
[27] T. D. Nquyen, F. Wang, X.-G. Li, E. Ehrenfreund, and Z. V. Vardeny, “Spin Diffusion in Fullerene-based Devices: Morphology Effect”, Phys. Rev. B 87, 075205 (2013).
[28] R. C. Johnson, R. E. Merrifield, P. Avakian, and R. B. Flippen, “Effects of Magnetic Fields on the Mutual Annihilation of Triplet Excitons in Molecular Crystals”, Phys. Rev. Lett. 19, 285 (1967).
[29] V. Ern and R. E. Merrifield, “Magnetic Field Effect on Triplet Exciton Quenching in Organic Crystals”, Phys. Rev. Lett. 21, 609 (1968).
[30] R. E. Merrifield, “Theory of Magnetic Field Effects on the Mutual Annihilation of Triplet Excitons”, J. Chem. Phys. 48, 4318 (1968).
[31] R. E. Merrifield, “Diffusion and Mutual Annihilation of Triplet Excitons in Organic Crystals”, Acc. Chem. Res. 1, 129 (1968).
[32] R. E. Merrifield, P. Avakian, and R. P. Groff, “Fission of Singlet Excitons into Pairs of Triplet Excitons in Tetracene Crystals”, Chem. Phys. Lett. 3, 155 (1969).
[33] R. E. Merrifield, P. Avakian, and R. P. Groff, “Fission of Singlet Excitons into Pairs of Triplet Excitons in Tetracene Crystals”, Chem. Phys. Lett. 3, 386 (1969).
[34] R. C. Johnson and R. E. Merrifield, “Effects of Magnetic Fields on the Mutual Annihilation of Triplet Excitons in Anthracene Crystals”, Phys. Rev. B 1, 896 (1970).
[35] E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, R. H. Baughman, H. H. Horhold, “Polaron-pair Generation in Poly(phenylene vinylenes)”, Phys. Rev. B, 46, 9320 (1992).
[36] J. Kalinowski, J. Szmytkowski, and W. Stampor, “Magnetic Hyperfine Modulation of Charge Photogeneration in Solid Films of Alq3”, Chem. Phys. Lett. 378, 380 (2003).
[37] B. Hu and Y. Wu, “Tuning Magnetoresistance between Positive and Negative Values in Organic Semiconductors”, Nature Materials 6, 985 (2007).
[38] Z. Xu and B. Hu, “Photovoltaic Processes of Singlet and Triplet Excited States in Organic Solar Cells”, Adv. Funct. Mater. 18, 2611 (2008).
[39] B. Hu, L. Yan, and M. Shao, “Magnetic-Field Effects in Organic Semiconducting Materials and Devices”, Adv. Mater. 21, 1500 (2009).
[40] P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, “The Role of Magnetic Fields on the Transport and Efficiency of Aluminum tris(8-hydroxyquinoline) Based Organic Light Emitting Diodes”, J. Appl. Phys. 102, 073710 (2007).
[41] P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, N. A. Morley and M. R. J. Gibbs, “Magnetoresistance and Efficiency Measurements of Alq3-based OLEDs”, Phys. Rev. B, 75, 094423 (2007).
[42] P. A. Bobbert, T. D. Nquyen, W. Wagemans, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, “Spin Relaxation and Magnetoresistance in Disordered Organic Semiconductors”, Synth. Metals 160, 223 (2010).
[43] Y. Sheng, T. D. Nquyen, G. Veeraraghavan, Ö. Mermer, M. Wohlgenannt, S. Qiu, and U. Scherf, “Hyperfine Interaction and Magnetoresistance in Organic Semiconductors”, Phys. Rev. B 74, 045213 (2006).
[44] M. Reufer, M. J. Walter, P.G. Lagoudakis, B. Hummel, J. S. Kolb, H. G. Roskos, U. Scherf, and J. M. Lupton, “Spin-conserving Carrier Recombination in Conjugated Polymers”, Nature Materials 4, 340 (2005).
[45] A. R. B. M. Yusoff, W. J. da Silva, J. P. M. Serbena, M. S. Meruvia, and I. A. Hümmelgen, “Very High Magnetocurrent in Tris-(8-hydroxyquinoline) Aluminum-based Bipolar Charge Injection Devices”, Appl. Phys. Lett. 94, 253305 (2009).
[46] T. K. Djidjou, T. Basel, and A. Rogachev, “Magnetic-field Dependent Differential Capacitance of Polymer Diodes”, Appl. Phys. Lett. 101, 093303 (2012).
[47] T. K. Djidjou, T. Basel, and A. Rogachev, “Admittance Spectroscopy Study of Polymer Diodes in Small Magnetic Fields”, J. Appl. Phys. 112, 024511 (2012).
[48] T. Reichert and T. P. I. Saragi, “Photoinduced Magnetoresistance in Organic Field-effect Transistors”, Appl. Phys. Lett. 98, 063307 (2011).
[49] T. Reichert and T. P. I. Saragi, “Photoinduced Negative Magnetoresistance in 6,13-bis(triisopropylsilylethynyl)-pentacene Field-effect Transistors”, Org. Electron. 12, 377 (2012).
[50] T. P. I. Saragi and T. Reichert, “Magnetic-field Effects in Illuminated Tetracene Field-effect Transistors”, Appl. Phys. Lett. 100, 073304 (2012).
[51] T. Reichert and T. P. I. Saragi, and J. Salbeck, “Magnetoresistive Field-effect Transistors Based on Organic Donor–acceptor Blends”, RSC Adv. 2, 7388 (2012).
[52] J. Y. Song, N. Stingelin, W. P. Gillin, and T. Kreouzis, “Reduced Hole Mobility due to the Presence of Excited States in Poly-(3-hexylthiophene)”, Appl. Phys. Lett. 93, 233306 (2008).
[53] J. Y. Song, N. Stingelin, A. J. Drew, T. Kreouzis, and W. P. Gillin, “Effect of Excited States and Applied Magnetic Fields on the Measured Hole Mobility in an Organic Semiconductor”, Phys. Rev. B 82, 085205 (2010).
[54] Y. Zhang, R. Liu, Y. L. Lei, and Z. H. Xiong, “Low Temperature Magnetic Field Effects in Alq3-based Organic Light Emitting Diodes”, Appl. Phys. Lett. 94, 083307 (2009).
[55] Y. L. Lei, Y. Zhang, R. Liu, P. Chen, Q. L. Song, and Z. H. Xiong, “Driving Current and Temperature Dependent Magnetic-field Modulated Electroluminescence in Alq3-based Organic Light Emitting Diode”, Org. Electron. 10, 889 (2009).
[56] Y. L. Lei, Q. L. Song, P. Chen, F. Li, Q. Zhang, Y. Zhang, and Z. H. Xiong, “Large Contribution of Triplet Excitons to Electro-fluorescence in Small Molecular Organic Light-emitting Diodes”, Org. Electron. 12, 1512 (2011).
[57] Q. Peng, N. Gao, W. Li, P. Cheng, F. Li, and Y. Ma, “Investigation of Energy Transfer and Charge Trapping in Dye-doped Organic Light-emitting Diodes by Magneto-electroluminescence Measurement”, Appl. Phys. Lett. 102, 193304 (2013).
[58] P. Shakya, P. Desai, T. Kreouzis, W. P. Gillin, S. M. Tuladhar, A. M. Ballantyne, and J. Nelson, “The Effect of Applied Magnetic Field on Photocurrent Generation in Poly-3-hexylthiophene:[6,6]-phenyl C61-butyric acid methyl ester Photovoltaic Devices”, J. Phys.: Condens. Mater. 20, 452203 (2008).
[59] S. Majumdar, H. S. Majumdar, H. Aarnio, D. Vanderzande, R. Laiho, and R. Österbacka, “Role of Electron-hole Pair Formation in Organic Magnetoresistance”, Phys. Rev. B 79, 201202(R) (2009).
[60] T. H. Lee, B. Hu, C. L. Tsai, R. S. Guan,T. C. Wen, T. F. Guo, and J. C. A. Huang, “The Magneto Conductance Responses in Polymer Photovoltaic Devices”, Organ. Electron. 11, 677 (2010).
[61] H. Zang, Z. Xu, and B. Hu, “Magneto-Optical Investigations on the Formation and Dissociation of Intermolecular Charge-Transfer Complexes at Donor-Acceptor Interfaces in Bulk-Heterojunction Organic Solar Cells”, J. Phys. Chem. B 114, 5704 (2010).
[62] H. Zang, Y. Liang, L. Yu, and B. Hu, “Intra-Molecular Donor–Acceptor Interaction Effects on Charge Dissociation, Charge Transport, and Charge Collection in Bulk-Heterojunction Organic Solar Cells”, Adv. Energy Mater. 1, 923 (2011).
[63] M. Pope and C. E. Swenberg, “Electronic Processes in Organic Crystals and Polymers” 2nd edition, Oxford University Press, New York, 1999.
[64] R. G. Kepler, J. C. Caris, P. Avakian, and E. Abramson, “Triplet Excitons and Delayed Fluorescence in Anthracene Crystals”, Phys. Rev. Lett. 10, 400 (1963).
[65] W. Bai, P. Chen, Y. L. Lei, Y. Zhang, Q. M. Zhang, Z. H. Xiong, and F. Li, “Studying Singlet Fission and Triplet Fusion by Magneto-electroluminescence Method in Singlet–Triplet Energy-resonant Organic Light-emitting Diodes”, Org. Electron. 15, 169 (2014).
[66] M. W. B. Wilson, A. Rao, J. Clark, R. S. S. Kumar, D. Brida, G. Cerullo, and R. H. Friend, “Ultrafast Dynamics of Exciton Fission in Polycrystalline Pentacene”, J. Am. Chem. Soc. 133, 11830 (2011).
[67] R. H. Friend, M. Phillips, A. Rao, M. W. B. Wilson, Z. Li and C. R. McNeill, “Excitons and Charges at Organic Semiconductor Heterojunctions”, Faraday Discuss. 155, 339 (2012).
[68] B. Ehrler, B. J. Walker, M. L. Böhm, M. W. B. Wilson, Y. Vaynzof, R. H. Friend, and N. C. Greenham, “In situ Measurement of Exciton Energy in Hybrid Singlet-fission Solar Cells”, Nature Common. 3, 1019 (2012).
[69] D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswing, M. E. Bahlke, S. Reineke, T. Van Voorhis, and M. A. Baldo, “External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission–Based Organic Photovoltaic Cell”, Science 340, 334 (2013).
[70] T. H. Lee, J. H. Li, W. S. Huang, B. Hu, J. C. A. Huang, T. F. Guo, and T. C. Wen, “Magnetoconductance Responses in Organic Charge-transfer-complex Molecules”, Appl. Phys. Lett. 99, 073307 (2011).
[71] W. S. Huang, T. H. Lee, T. F. Guo, J. C. A. Huang, and T. C. Wen, “Identifying the Magnetoconductance Responses by the Induced Charge Transfer Complex States in Pentacene-based Diodes”, Appl. Phys. Lett. 101, 053307 (2012).
[72] W. S. Huang, Z. R. Xu, B. Hu, T. F. Guo, J. C. A. Huang, and T. C. Wen, “Magnetoconductance Responses of Triplet Polaron Pair Charge Reaction in Hyperfine Coupling Regime”, Appl. Phys. Lett. 103, 253304 (2013).
[73] K. W. Tsai, T. H. Lee, J. H. Wua, J. Y. Jhou, W. S. Huang, S. N. Hsieh, T. C. Wen, T. F. Guo, and J. C. A. Huang, “Antagonistic Responses between Magnetoconductance and Magnetoelectroluminescence in Polymer Light-emitting Diodes”, Org. Electron. 14, 1376 (2013).
[74] I. V. Tolstov, A. V. Belov, M. G. Kaplunov, I. K. Yakuschenko, N. G. Spitsina, M. M. Triebel, and E. L. Frankevich, “On the Role of Magnetic Field Spin Effect in Photoconductivity of Composite Films of MEH-PPV and Nanosized Particles of PbS”, J. Lumin. 112, 368 (2005).
[75] J. Levinson, S. Z. Weisz, A. Cobas, and A. Rolón, “Determination of the Triplet Exciton‐Trapped Electron Interaction Rate Constant in Anthracene Crystals”, J. Chem. Phys. 52, 2794 (1970).
[76] W. Helfrich, “Destruction of Triplet Excitons in Anthracene by Injected Electrons”, Phys. Rev. Lett. 16, 401 (1966).
[77] M. Wittmer and I. Zschokke‐Gränacher, “Exciton–Charge Carrier Interactions in the Electroluminescence of Crystalline Anthracene”, J. Chem. Phys. 63, 4187 (1975).
[78] C. J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J. C. Hummelen, and S. Sariciftci, “Tracing Photoinduced Electron Transfer Process in Conjugated Polymer/Fullerene Bulk Heterojunctions in Real Time”, Chem. Phys. Lett. 340, 232 (2001).
[79] U. E. Steiner and T. Ulrich, “Magnetic Field Effects in Chemical Kinetics and Related Phenomena”, Chem. Rev. 89, 51 (1989).
[80] S. Z. Weisz, P. Richardson, A. Cobas, and R. C. Jarnagin, Mol. Cryst. 3, 168 (1967).
[81] V. M. Agranovich, D. M. Basko, K. Schmidt, G. C. LaRocca, F. Bassani, S. Forrest, K. Leo, and D. Lidzey, “Charged Frenkel Excitons in Organic Crystals”, Chem. Phys. 272, 159 (2001).
[82] Q. Peng, J. Sun, S. Li, M. Li, and F. Li, “Investigation of the Magnetic Field Effects on Electron Mobility in Tri-(8-hydroxyquinoline)-aluminum Based Light-emitting Devices”, Appl. Phys. Lett. 99, 033509 (2011).
[83] U. Niedermeier, “Magnetic Field Effect in Organic Light Emitting Diodes” PhD Thesis, TU Darmstadt, 2010.
[84] S. Braun, W. R. Salaneck, and M. Fahlman, “Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces”, Adv. Mater. 21, 1450 (2009).
[85] Y. Sheng, T. D. Nguyen, G. Veeraraghavan, Ö. Mermer, and M. Wohlgenannt, “Effect of Spin-Orbit Coupling on Magnetoresistance in Organic Semiconductors”, Phys. Rev. B 75, 035202 (2007).
[86] R. Eisberg and R. Resnick, “Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles” 2nd edition, John Wiley & Sons, Canada, 1985.
[87] N. Zettili, “Quantum Mechanics Concepts and Applications” 2nd edition, John Wiley & Sons, United Kingdom, 2009.
[88] A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, “Triplet Energies of π-Conjugated Polymers”, Phys. Rev. Lett. 86,1358 (2001).
[89] A. Köhler and D. Beljonne, “The Singlet–Triplet Exchange Energy in Conjugated Polymers”, Adv. Funct. Mater. 14, 11 (2004).
[90] A. Kadashchuk, A. Vakhnin, I. Blonski, Z. Shuai, J. L. Brédas, V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Singlet-Triplet Splitting of Geminate Electron-Hole Pairs in Conjugated Polymers”, Phys. Rev. Lett. 93, 066803 (2004).
[91] J. Martin, “Magnetic Field Dependent Charge Transport Studies in Organic Semiconducting Materials” PhD Thesis, The Ohio State University, 2011.
[92] R. N. Mahato, H. Lülf, M. H. Siekman, S. P. Kersten, P. A. Bobbert, M. P. de Jong, L. De Cola, and W. G. van der Wiel, “Ultrahigh Magnetoresistance at Room Temperature in Molecular Wires”, Science, 341, 257 (2013).
[93] P. Chen, Q. Peng, L. Yao, N. Gao, and F. Li, “Identifying the Efficient Inter-conversion between Singlet and Triplet Charge-transfer States by Magneto-electroluminescence Study”, Appl. Phys. Lett. 102, 063301 (2013).
[94] T. D. Nguyen, Y. Sheng, J. Rybicki, G. Veeraraghavan, and M. Wohlgenannt, “Magnetoresistance in π-Conjugated Organic Sandwich Devices with Varying Hyperfine and Spin–Orbit Coupling Strengths, and Varying Dopant Concentrations”, J. Mater. Chem. 17, 1995 (2007).
[95] S. Zhang, A. J. Drew, T. Kreouzis, and W. P. Gillin, “Modelling of Organic Magnetoresistance as a Function of Temperature Using the Triplet Polaron Interaction”, Synth. Met. 161, 628 (2011).
[96] W. P. Gillin, S. Zhang, N. J. Rolfe, P. Desai, P. Shakya, A. J. Drew, and T. Kreouzis, “Determining the Influence of Excited States on Current Transport in Organic Light Emitting Diodes Using Magnetic Field Perturbation”, Phys. Rev. B 82, 195208 (2010).
[97] H. Zang, J. Wang, M. Li, L. He, Z. Liu, D. Zhang, and B. Hu, “Spin Radical Enhanced Magnetocapacitance Effect in Intermolecular Excited States”, J. Phys. Chem. B 117, 14136 (2013).
[98] L. He, M. Li, A. Urbas, and B. Hu, “Magnetophotoluminescence Line-shape Narrowing through Interactions between Excited States in Organic Semiconducting Materials”, Phys. Rev. B 89, 155304 (2014).
[99] Y. Wakikawa, T. Ikoma, Y. Yamamoto, T. Fukushima, T. Aida, and K. Akiyama, “Effect of Acceptor Lamination on Photocarrier Dynamics in Hole Transporting Hexabenzocoronene Nanotubular Self-Assembly”, J. Phys. Chem. C, 117, 15295 (2013).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw