進階搜尋


 
系統識別號 U0026-2507201411563900
論文名稱(中文) 高分子太陽能電池電極界面的反應機制與新穎甲基胺碘化鉛鈣鈦礦結構混成太陽能電池
論文名稱(英文) Electrode interface in polymer bulk-heterojunction solar cells and novel methylamine lead iodide perovskite hybrid solar cells
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 2
出版年 103
研究生(中文) 鄭鈞元
研究生(英文) Jun-Yuan Jeng
電子信箱 l7897114@mail.ncku.edu.tw
學號 L78971144
學位類別 博士
語文別 英文
論文頁數 123頁
口試委員 指導教授-郭宗枋
召集委員-黃榮俊
口試委員-溫添進
口試委員-賴韋志
口試委員-朱治偉
口試委員-何國川
中文關鍵字 poly(ethylene oxide)  鈣鈦礦  混成太陽能電池  金屬氧化物  氧化鎳 
英文關鍵字 poly(ethylene oxide)  perovskite  hybrid solar cell  metal oxide  nickel oxide 
學科別分類
中文摘要 本論文分為兩部分:第一部分我們使用poly(ethylene oxide)高分子材料當作金屬Al和有機吸光層poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM)之間的電極介面層(electrode interface layer),此電極介面能改善Al和P3HT:PCBM吸光層之間的介面(interface)並且提升元件表現。我們選用分子量較小的poly(ethylene glycol) dimethyl ether (PEGDE, Mn ca. 2,000)材料,可以使用Al和PEGDE兩種材料同時共蒸鍍(co-evaporating)的方法來製作電極緩衝層。在熱蒸鍍過程中ethylene oxide/Al的介面會形成carbide-like反應,這個反應可以大幅增進元件電子往Al電極的傳導能力。透過Al和PEGDE的共蒸鍍比率的調變,我們從單層鍍Al的VOC和PCE分別從0.44V和1.64%增加到PEGDE:Al (2:1)/Al電極介面元件0.58V和4.00%。
第二部分我們是第一個團隊製作出二甲基胺碘化鉛鈣鈦礦/碳六十(methylammonium lead iodide (CH3NH3PbI3)/fullerene (C60))的平面異質接面(planar-heterojunction)混成太陽能電池(hybrid solar cells)結構。在真空環境下蒸鍍一層C60 (acceptor)在CH3NH3PbI3 (donor)上做成平面異質接面太陽能電池。CH3NH3PbI3可以吸收從近紅外光(near infrared)到可見光的寬波段光譜,同時可以導電電荷。不需要加入染料敏化太陽能電池常用的奈米結構金屬氧化物(mesoporous metal-oxide nanostructures)和電洞傳輸層(hole-transport layer)。CH3NH3PbI3/C60元件得到顯著的效率表現,接著我們分別使用具有較高lowest unoccupied molecular orbital (LUMO)能階的材料PCBM和indene-C60 bisadduc (ICBA)取代C60,元件分別增加為VOC 0.65和0.75 V,PCE 2.4 %和2.1 %。這些結果可以驗證CH3NH3PbI3 perovskite/C60 or C60 derivatives可以形成平面異質接面的形成。我們發現CH3NH3PbI3的highest occupied molecular orbital (HOMO)能階和ITO的費米能階(Fermi level)之間的能階差會決定元件的輸出電壓。在PET (polyethylene terephthalate)基板的ITO具有與glass/ITO不同的功函數,較高的功函數ITO使元件表現出VOC明顯的提昇(0.92 V)和PCE 4.54%
我們在透明導電玻璃(glass/ indium-tin-oxide, ITO)電極和CH3NH3PbI3之間插入一層氧化鎳nickel-oxide (NiOx)薄膜,此插入層大幅提升元件的表現。第一個原因,NiOx是一個有較高功函數(work function)的p型半導體材料,其功函數5.4 eV接近CH3NH3PbI3的價帶能階,它減少電洞在此介面傳導的能量損耗並改善光電壓(photovoltage)的輸出。第二個原因,CH3NH3PbI3塗佈在glass/ITO/NiOx基板上相較於塗佈在glass/ITO/PEDOT:PSS基板上具有較密集平滑的形貌(morphology)。CH3NH3PbI3在NiOx基板上具有較高的表面覆蓋率,它提升了光的吸收,降低元件漏電流(leakage current)並提高元件的表現。最好的表現達到VOC = 0.92 V,JSC = 12.43 mA/cm2,FF = 0.68和PCE of 7.8 %。
英文摘要 This thesis is divided into two part: firstly, we investigated the roles of poly(ethylene oxide) polymer been used as an effective buffer with Al electrode to markedly improve the electrode interface and enhance the open-circuit voltage (VOC) and the power conversion efficiency (PCE) of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM)-based bulk-heterojunction (BHJ) solar cells. A unique process by thermally co-evaporating the poly(ethylene glycol) dimethyl ether (PEGDE, Mn ca. 2,000) polymer with Al metal simultaneously at different ratios in vacuum (10-6 torr) was developed to prepare the electrode buffers. The VOC and PCE for devices fabricated with Al electrode are 0.44V and 1.64%, respectively, and largely improved to 0.58V and 4.00% applying PEGDE:Al (2:1)/Al electrode under standard 1 Sun AM 1.5 simulated solar irradiation.
Secondly, we fabricated methylammonium lead iodide (CH3NH3PbI3)/fullerene (C60), donor/acceptor planar-heterojunction (PHJ) solar cells. The deposition of a thin C60 (acceptor) layer in vacuum on CH3NH3PbI3 perovskite (donor) creates a hybrid PHJ for fabricating solar cells. CH3NH3PbI3 perovskite harvests the wild range of light from visible-to-near infrared and transports the positive charges. The CH3NH3PbI3/C60 PHJ devices exhibits the promising photovoltaic performance. In addition, the magnitudes of VOC and PCE elevate to 0.65 and 0.75 V, 2.4 % and 2.1 % using PCBM and indene-C60 bisadduc (ICBA), respectively, of higher lowest unoccupied molecular orbital (LUMO) level, instead of C60 as the acceptor. These results verify the functions of CH3NH3PbI3 perovskite/C60 or C60 derivatives PHJ to the modulation of the photovoltaic parameters and the development of newly designed, hybrid, efficient solar cells. We also find the difference between the highest occupied molecular orbital (HOMO) level of CH3NH3PbI3 perovskite and the Fermi level of ITO dominates the voltage output of the device. With ITO films on glass or on the polyethylene terephthalate (PET) flexible substrate with different work functions, we show significant VOC enhancement (920mV).
Applying a thin nickel-oxide (NiOx) interlayer between glass/ indium-tin-oxide (ITO) electrode and light absorbing CH3NH3PbI3 perovskite significantly increases the photovoltaic performance of perovskite/fullerene-derivative PHJ solar cells. First, NiOx electrode-interlayer is a p-type semiconductor of high work function of 5.4 eV, which is close to the valence band edge level of CH3NH3PbI3 perovskite (5.4 eV). The alignment of energy level minimizes the interfacial energy losses for the hole transfer and optimizes the photovoltage output of device. Second, CH3NH3PbI3 perovskite films prepared by the spin-coating process on glass/ITO/NiOx substrate exhibit a relatively smooth morphology than those deposited on glass/ITO/ PEDOT:PSS substrate. The conformal coverage of the perovskite film enhances the light harvesting, reduces the leakage current, increases JSC, and elevates the PCE of the devices. The best performing cell with the configuration of glass/ITO/NiOx/CH3NH3PbI3 perovskite/PCBM/bathocuproine/Al presents a VOC = 0.92 V, a JSC = 12.43 mA/cm2, and a FF = 0.68, corresponding to a PCE of 7.8 %.
論文目次 中文摘要 I
Abstract III
誌謝 V
Table of Contents VI
List of Figures X
List of Tables XV
Chapter 1 Introduction 1
1.1 Motivation of the study 4
1.2 Scope of this research 5
Chapter 2 History and operation principles review 7
2.1 History of solar cells 7
2.2 Characteristics of the Photovoltaic Cell 11
2.2.1 Air mass 11
2.2.2 Photocurrent and quantum efficiency 12
2.2.3 Dark current and open circuit voltage 13
2.2.4 Efficiency 14
2.3 Organic solar cell structures and mechanism 15
2.3.1 Single active-layer device 15
2.3.2 Double active-layer device 16
2.3.3 Bulk heterojunction photovoltaic cell 16
2.4 Organic solar cell mechanism 17
2.4.1 Absorption of light 17
2.4.2 Exciton diffusion and charge separation 18
2.4.3 Charge transport 18
2.4.4 Charge collection 18
2.4.5 Potential of perovskite planar solar cells 19
2.5 Summary 20
Chapter 3 Experimental methods 22
3.1 Device fabrication 22
3.1.1 Materials and device structures 22
3.1.2 Fabrication process 24
3.2 Electrical characteristic measurement 28
3.2.1 Current density-voltage (J-V) measurement 28
3.2.2 Incident photo-to current conversion efficiency (IPCE) measurement 28
3.3 Surface analysis 28
3.3.1 UV-VIS spectroscopy 28
3.3.2 Scanning electron microscope 29
3.3.3 Atomic force microscopy 29
3.3.4 X-ray photoelectron spectroscopy (XPS) 29
3.3.5 Ultraviolet photoelectron spectroscopy (UPS) 29
3.4 Summary 30
Chapter 4 The Roles of Poly (Ethylene Oxide) Electrode Buffers in Efficient Polymer Photovoltaics 31
4.1 Introduction 31
4.2 Experimental Section 34
4.2.1 Fabrication of P3HT:PCBM-based BHJ Polymer Solar Cells with Complex Electrodes 34
4.2.2 XPS and UPS Measurements 36
4.3 Electric characteristics 37
4.3.1 Performance of PEGDE/Al devices 37
4.3.2 Performance of PEGDE/Al/Ag devices 39
4.3.3 Reactions at PEGDE/Al interface by XPS analysis 41
4.3.4 Work function change at PEGDE/Al interface from UPS analysis 43
4.3.5 The performance optimization of the devices 44
4.4 Summary 48
Chapter 5 CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells 49
5.1 Introduction 49
5.2 Experimental Section 50
5.3 The morphology of CH3NH3PbI3 film deposition 52
5.4 Electric characteristics 54
5.4.1 Performance of CH3NH3PbI3/C60 device 55
5.4.2 Performance of device with alternating the acceptor layers 57
5.5 IPCE resposivity spectrum of CH3NH3PbI3 devices 58
5.6 Morphology of CH3NH3PbI3 films study 60
5.7 Summary 65
Chapter 6 High voltage and efficient bilayer heterojunction solar cells based on organic-inorganic hybrid perovskite absorber with low-cost flexible substrate 67
6.1 Introduction 67
6.2 Experiment sections 67
6.3 Performance of devices with different ITO substrates 70
6.4 VOC original the energy levels of the interface 75
6.5 Work function of the ITO with different substrates 76
6.6 Transmission of different ITOs correspond to IPCE spectrum of devices 79
6.7 Summary 81
Chapter 7 Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar Heterojunction Hybrid Solar Cells 83
7.1 Introduction 83
7.2 Experiment sections 86
7.3 Exitons transfering at the perovskite/substrate interface 89
7.4 Morphology of perovskite films with different electrode interlayers 90
7.5 Analysis for work function of NiOx 93
7.6 Electric characteristic of device with NiOx 94
7.7 IPCE responsivity of NiOx electrode devices 96
7.8 Summary 98
Chapter 8 Conclusion and Future work 100
8.1 Conclusion 100
8.2 Future work 101
References 103
Curriculum Vita 122
Publication Paper 122
Conference papers 123
參考文獻 [1] A. Raval, V. Ramanathan, Observational determination of the greenhouse effect, Nature, 342 (1989) 758-761.
[2] J.P. Ponpon, A review of ohmic and rectifying contacts on cadmium telluride, Solid-State Electronics, 28 (1985)689-706.
[3] A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Bätzner, F.J. Haug, M. Kälin, D. Rudmann, A.N. Tiwari, Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells, Progress in Photovoltaics: Research and Applications, 12 (2004) 93-111.
[4] G. Conibeer, Third-generation photovoltaics, Materials Today, 10 (2007) 42-50.
[5] D. Braun, A.J. Heeger, Visible light emission from semiconducting polymer diodes, Applied Physics Letters, 58(1991) 1982-1984.
[6] C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Plastic solar cells, Advanced Functional Materials, 11 (2001) 15-26.
[7] C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, High-performance organic thin-film transistors with metal oxide/metal bilayer electrode, Applied Physics Letters, 87 (2005) 193508.
[8] P. Dannetun, M. Lögdlund, M. Fahlman, M. Boman, S. Stafström, W.R. Salaneck, R. Lazzaroni, C. Fredriksson, J.L. Brédas, S. Graham, R.H. Friend, A.B. Holmes, R. Zamboni, C. Taliani, The chemical and electronic structure of the interface between aluminum and conjugated polymers or molecules, Synthetic Metals, 55 (1993) 212-217.
[9] T.P. Nguyen, J. Ip, P. Jolinat, P. Destruel, XPS and sputtering study of the Alq3/electrode interfaces in organic light emitting diodes, Applied Surface Science, 172 (2001) 75-83.
[10] W.J.H. van Gennip, J.K.J. van Duren, P.C. Thüne, R.A.J. Janssen, J.W. Niemantsverdriet, The interfaces of poly(p-phenylene vinylene) and fullerene derivatives with Al, LiF, and Al/LiF studied by secondary ion mass spectroscopy and x-ray photoelectron spectroscopy: Formation of AlF3 disproved, The Journal of Chemical Physics, 117 (2002) 5031-5035.
[11] A. Crispin, A. Jonsson, M. Fahlman, W.R. Salaneck, Aluminum–barium interfaces on some processable poly(p-phenylene vinylene) polymers studied by photoelectron spectroscopy, The Journal of Chemical Physics, 115 (2001) 5252-5257.
[12] G.G. Andersson, W.J.H. van Gennip, J.W. Niemantsverdriet, H.H. Brongersma, Calcium induced oxidation of PPV studied with X-ray photoelectron spectroscopy and secondary ion mass spectrometry, Chemical Physics, 278 (2002) 159-167.
[13] J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3 (2011) 4088-4093.
[14] H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Science Reports, 2 (2012) 591.
[15] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, 131 (2009) 6050-6051.
[16] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338 (2012) 643-647.
[17] L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Gratzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, Journal of the American Chemical Society, 134 (2012) 17396-17399.
[18] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270 (1995) 1789-1791.
[19] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature materials, 4 (2005) 864-868.
[20] P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, Journal of Applied Physics, 93 (2003) 3693-3723.
[21] K.M. Coakley, Y. Liu, M.D. McGehee, K.L. Frindell, G.D. Stucky, Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications, Advanced Functional Materials, 13 (2003) 301-306.
[22] M.-S. Su, C.-Y. Kuo, M.-C. Yuan, U.S. Jeng, C.-J. Su, K.-H. Wei, Improving Device Efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives, Advanced materials, 23 (2011) 3315-3319.
[23] S.-W. Chiu, L.-Y. Lin, H.-W. Lin, Y.-H. Chen, Z.-Y. Huang, Y.-T. Lin, F. Lin, Y.-H. Liu, K.-T. Wong, A donor-acceptor-acceptor molecule for vacuum-processed organic solar cells with a power conversion efficiency of 6.4%, Chemical Communications, 48 (2012) 1857-1859.
[24] M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proceedings of the National Academy of Sciences, 105 (2008) 2783-2787.
[25] K.X. Steirer, P.F. Ndione, N.E. Widjonarko, M.T. Lloyd, J. Meyer, E.L. Ratcliff, A. Kahn, N.R. Armstrong, C.J. Curtis, D.S. Ginley, J.J. Berry, D.C. Olson, Enhanced efficiency in plastic solar cells via energy matched solution processed NiOx interlayers, Advanced Energy Materials, 1 (2011) 813-820.
[26] A.-E. Becquerel, Mémoire sur les effets électriques produits sous l’influence des rayons solaires, Comptes Rendus, 9 (1839) 1839.
[27] W.G. Adams, R. Day, The action of light on selenium, Proceedings of the Royal Society of London, 25 (1876) 113-117.
[28] S.M. Sze, K.K. Ng, Metal-semiconductor contacts, physics of semiconductor devices, John Wiley & Sons, Inc. (2006) 134-196.
[29] D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics, 25 (1954) 676-677.
[30] I. Korhonen, T. Juurikkala, Equilibrium exchange rates in oil-exporting countries, Journal of Economics and Finance, 33 (2009) 71-79.
[31] M.A. Green, Silicon photovoltaic modules: a brief history of the first 50 years, Progress in Photovoltaics: Research and Applications, 13 (2005) 447-455.
[32] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 43), Progress in Photovoltaics: Research and Applications, 22 (2014) 1-9.
[33] C.J. Brabec, Organic photovoltaics: technology and market, Solar Energy Materials and Solar Cells, 83 (2004) 273-292.
[34] T. Ameri, P. Khoram, J. Min, C.J. Brabec, Organic ternary solar cells: A review, Advanced materials, 25 (2013) 4245-4266.
[35] J. Ahmad, K. Bazaka, L.J. Anderson, R.D. White, M.V. Jacob, Materials and methods for encapsulation of OPV: A review, Renewable and Sustainable Energy Reviews, 27 (2013) 104-117.
[36] C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Applied Physics Letters, 51 (1987) 913-915.
[37] C.W. Tang, Two-layer organic photovoltaic cell, Applied Physics Letters, 48 (1986) 183-185.
[38] H. Kallmann, M. Pope, Photovoltaic effect in organic crystals, The Journal of Chemical Physics, 30 (1959) 585-586.
[39] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gügel, K. Müllen, Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures, Physical Review B, 59 (1999) 15346-15351.
[40] P.E. Shaw, A. Ruseckas, I.D.W. Samuel, Exciton diffusion measurements in Poly(3-hexylthiophene), Advanced materials, 20 (2008) 3516-3520.
[41] X.-S. Zeng, T.-F. Shi, C.-H. Ye, N. Li, X.-H. Li, Y.-Q. Wang, The near surface morphology of P3HT:PCBM blend films studied by near-edge X-Ray absorption fine structure, Chinese Physics Letters, 31 (2014) 056102.
[42] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, 2.5% efficient organic plastic solar cells, Applied Physics Letters, 78 (2001) 841-843.
[43] F. Padinger, R.S. Rittberger, N.S. Sariciftci, Effects of postproduction treatment on plastic solar cells, Advanced Functional Materials, 13 (2003) 85-88.
[44] B.P. Rand, J. Xue, S. Uchida, S.R. Forrest, Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. I. Material properties, Journal of Applied Physics, 98 (2005) 124902.
[45] J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature Materials, 6 (2007) 497-500.
[46] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nature Photonics, 3 (2009) 297-302.
[47] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 35), Progress in Photovoltaics: Research and Applications, 18 (2010) 144-150.
[48] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nature Photonics, 6 (2012) 591-595.
[49] D.G.f. Sonnenenergie, Planning and installing photovoltaic systems: A guide for installers, Architects and Engineers, Earthscan (2008).
[50] D.G. Sonnenenergie, Planning and installing photovoltaic systems: A guide for installers, Architects and Engineers, Taylor & Francis (2013).
[51] G.L. Araújo, A. Martí, Absolute limiting efficiencies for photovoltaic energy conversion, Solar Energy Materials and Solar Cells, 33 (1994) 213-240.
[52] S.M. Sze, Semiconductor Devices: Physics and technology, Wiley (2001).
[53] X. Yang, A. Uddin, Effect of thermal annealing on P3HT:PCBM bulk-heterojunction organic solar cells: A critical review, Renewable and Sustainable Energy Reviews, 30 (2014) 324-336.
[54] H. Hoppe, N.S. Sariciftci, Organic solar cells: An overview, Journal of Materials Research, 19 (2004) 1924-1945.
[55] S. Gunes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells, Chemical Reviews-Columbus, 107 (2007) 1324-1338.
[56] B.C. Thompson, J.M.J. Fréchet, Polymer–fullerene composite solar cells, Angewandte Chemie International Edition, 47 (2008) 58-77.
[57] G. Li, R. Zhu, Y. Yang, Polymer solar cells, Nature Photonics, 6 (2012) 153-161.
[58] J.J.M. Halls, R.H. Friend, The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction, Synthetic Metals, 85 (1997) 1307-1308.
[59] F. Nüesch, F. Rotzinger, L. Si-Ahmed, L. Zuppiroli, Chemical potential shifts at organic device electrodes induced by grafted monolayers, Chemical Physics Letters, 288 (1998) 861-867.
[60] M. Kemerink, J.M. Kramer, H.H.P. Gommans, R.A.J. Janssen, Temperature-dependent built-in potential in organic semiconductor devices, Applied Physics Letters, 88 (2006) 192108.
[61] T.W. Lee, O.O. Park, The effect of different heat treatments on the luminescence efficiency of polymer light-emitting diodes, Advanced materials, 12 (2000) 801-804.
[62] P.K. Nayak, J. Bisquert, D. Cahen, Assessing possibilities and limits for solar cells, Advanced materials, 23 (2011) 2870-2876.
[63] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Science Reports, 2 (2012) 591.
[64] J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H.-J. Kim, A. Sarkar, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nature Photonics, 7 (2013) 487-492.
[65] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338 (2012) 643-647.
[66] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499 (2013) 316-319.
[67] M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501 (2013) 395–398.
[68] J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Advanced Materials, 25 (2013) 3727-3732.
[69] L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Graetzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, Journal of the American Chemical Society, 134 (2012) 17396-17399.
[70] A. Garcia, G.C. Welch, E.L. Ratcliff, D.S. Ginley, G.C. Bazan, D.C. Olson, Improvement of interfacial contacts for new small-molecule bulk-heterojunction organic photovoltaics, Advanced materials, 24 (2012) 5368-5373.
[71] J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Advanced materials, 25 (2013) 3727-3732.
[72] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Accurate measurement and characterization of organic solar cells, Advanced Functional Materials, 16 (2006) 2016-2023.
[73] Y.Y. Lin, D.J. Gundlach, S.F. Nelson, T.N. Jackson, Stacked pentacene layer organic thin-film transistors with improved characteristics, Electron Device Letters, IEEE, 18 (1997) 606-608.
[74] H. Becker, A. Lux, A.B. Holmes, R.H. Friend, PL and EL quenching due to thin metal films in conjugated polymers and polymer LEDs, Synthetic Metals, 85 (1997) 1289-1290.
[75] H. Becker, S.E. Burns, R.H. Friend, Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers, Physical Review B, 56 (1997) 1893-1905.
[76] J.N. Audinot, P. Lévêque, R. Bechara, N. Leclerc, J. Guillot, H.N. Migeon, G. Hadziioannou, T. Heiser, Characterization of P3HT/PCBM bulk heterojunction photovoltaic devices using advanced secondary ion mass spectrometry techniques, Surface and Interface Analysis, 42 (2010) 1010-1013.
[77] C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Origin of the open circuit voltage of plastic solar cells, Advanced Functional Materials, 11 (2001) 374-380.
[78] V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens, Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells, Journal of Applied Physics, 94 (2003) 6849-6854.
[79] V.D. Mihailetchi, L.J.A. Koster, P.W.M. Blom, Effect of metal electrodes on the performance of polymer:fullerene bulk heterojunction solar cells, Applied Physics Letters, 85 (2004) 970-972.
[80] C.M. Ramsdale, J.A. Barker, A.C. Arias, J.D. MacKenzie, R.H. Friend, N.C. Greenham, The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices, Journal of Applied Physics, 92 (2002) 4266-4270.
[81] C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, P. Denk, Effect of LiF/metal electrodes on the performance of plastic solar cells, Applied Physics Letters, 80 (2002) 1288-1290.
[82] H.-L. Yip, S.K. Hau, N.S. Baek, H. Ma, A.K.Y. Jen, Polymer solar cells that use self-assembled-monolayer- modified ZnO/metals as cathodes, Advanced materials, 20 (2008) 2376-2382.
[83] C. He, C. Zhong, H. Wu, R. Yang, W. Yang, F. Huang, G.C. Bazan, Y. Cao, Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes, Journal of Materials Chemistry, 20 (2010) 2617-2622.
[84] Q. Wei, T. Nishizawa, K. Tajima, K. Hashimoto, Self-organized buffer layers in organic solar cells, Advanced materials, 20 (2008) 2211-2216.
[85] J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, A.J. Heeger, New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, Advanced materials, 18 (2006) 572-576.
[86] S.J. Yoon, J.H. Park, H.K. Lee, O.O. Park, Low vacuum process for polymer solar cells: Effect of TiOx interlayer, Applied Physics Letters, 92 (2008) 143504.
[87] W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Advanced Functional Materials, 15 (2005) 1617-1622.
[88] C.R. McNeill, J.J.M. Halls, R. Wilson, G.L. Whiting, S. Berkebile, M.G. Ramsey, R.H. Friend, N.C. Greenham, Efficient polythiophene/polyfluorene copolymer bulk heterojunction photovoltaic devices: Device physics and annealing effects, Advanced Functional Materials, 18 (2008) 2309-2321.
[89] H. Kim, W.-W. So, S.-J. Moon, The importance of post-annealing process in the device performance of poly(3-hexylthiophene): Methanofullerene polymer solar cell, Solar Energy Materials and Solar Cells, 91 (2007) 581-587.
[90] Z. Feng, Y. Hou, D. Lei, The influence of electrode buffer layers on the performance of polymer photovoltaic devices, Renewable Energy, 35 (2010) 1175-1178.
[91] Y. Zhao, Z. Xie, C. Qin, Y. Qu, Y. Geng, L. Wang, Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer, Solar Energy Materials and Solar Cells, 93 (2009) 604-608.
[92] S.-H. Oh, S.-I. Na, J. Jo, B. Lim, D. Vak, D.-Y. Kim, Water-soluble polyfluorenes as an interfacial layer leading to cathode-independent high performance of organic solar cells, Advanced Functional Materials, 20 (2010) 1977-1983.
[93] S.-I. Na, S.-H. Oh, S.-S. Kim, D.-Y. Kim, Efficient organic solar cells with polyfluorene derivatives as a cathode interfacial layer, Organic Electronics, 10 (2009) 496-500.
[94] F. Huang, L. Hou, H. Wu, X. Wang, H. Shen, W. Cao, W. Yang, Y. Cao, High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode:  Green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors, Journal of the American Chemical Society, 126 (2004) 9845-9853.
[95] S.-H. Oh, D. Vak, S.-I. Na, T.-W. Lee, D.-Y. Kim, Water-soluble polyfluorenes as an electron injecting layer in pleds for extremely high quantum efficiency, Advanced materials, 20 (2008) 1624-1629.
[96] T.-F. Guo, F.-S. Yang, Z.-J. Tsai, T.-C. Wen, S.-N. Hsieh, Y.-S. Fu, High-performance polymer light-emitting diodes utilizing modified Al cathode, Applied Physics Letters, 87 (2005) 013504.
[97] F. Zhang, M. Ceder, O. Inganäs, Enhancing the photovoltage of polymer solar cells by using a modified cathode, Advanced materials, 19 (2007) 1835-1838.
[98] F.-C. Chen, S.-C. Chien, Nanoscale functional interlayers formed through spontaneous vertical phase separation in polymer photovoltaic devices, Journal of Materials Chemistry, 19 (2009) 6865-6869.
[99] T.-F. Guo, F.-S. Yang, Z.-J. Tsai, T.-C. Wen, C.-I. Wu, C.-T. Chung, Organic oxide/Al composite cathode in small molecular organic light-emitting diodes, Applied Physics Letters, 89 (2006) 053507.
[100] T.-F. Guo, F.-S. Yang, Z.-J. Tsai, G.-W. Feng, T.-C. Wen, S.-N. Hsieh, C.-T. Chung, C.-I. Wu, High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al∕Ag composite cathode, Applied Physics Letters, 89 (2006) 051103.
[101] T.-H. Lee, J.-C.-A. Huang, G.L.v. Pakhomov, T.-F. Guo, T.-C. Wen, Y.-S. Huang, C.-C. Tsou, C.-T. Chung, Y.-C. Lin, Y.-J. Hsu, Organic-oxide cathode buffer layer in fabricating high-performance polymer light-emitting diodes, Advanced Functional Materials, 18 (2008) 3036-3042.
[102] C. Waldauf, M.C. Scharber, P. Schilinsky, J.A. Hauch, C.J. Brabec, Physics of organic bulk heterojunction devices for photovoltaic applications, Journal of Applied Physics, 99 (2006) 104503-104506.
[103] T.P. Nguyen, J.L. Mansot, Metal-oxygen-carbon interaction in the poly(p-phenylene vinylene)-aluminum system: a study by analytical transmission electron microscopy and X-ray photoelectron spectroscopy, Thin Solid Films, 283 (1996) 135-139.
[104] M.-W. Lin, T.-C. Wen, Y.-J. Hsu, T.-F. Guo, Poly(ethylene oxide)-functionalized Al cathodes of tunable electron-injection capabilities for efficient polymer light-emitting diodes, Journal of Materials Chemistry, 21 (2011) 18840-18846.
[105] I.K. Ding, N. Tétreault, J. Brillet, B.E. Hardin, E.H. Smith, S.J. Rosenthal, F. Sauvage, M. Grätzel, M.D. McGehee, Pore-Filling of Spiro-OMeTAD in solid-state dye sensitized solar cells: Quantification, mechanism, and consequences for device performance, Advanced Functional Materials, 19 (2009) 2431-2436.
[106] U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 395 (1998) 583-585.
[107] M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—Towards 10 % energy-conversion efficiency, Advanced materials, 18 (2006) 789-794.
[108] B.P. Rand, D.P. Burk, S.R. Forrest, Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells, Physical Review B, 75 (2007) 115327.
[109] G. Zhao, Y. He, Y. Li, 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by device optimization, Advanced materials, 22 (2010) 4355-4358.
[110] P. Peumans, S.R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Applied Physics Letters, 79 (2001) 126-128.
[111] L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells, Applied Physics Letters, 88 (2006) 093511.
[112] H. Xin, S. Subramaniyan, T.-W. Kwon, S. Shoaee, J.R. Durrant, S.A. Jenekhe, Enhanced open circuit voltage and efficiency of donor–acceptor copolymer solar cells by using Indene-C60 bisadduct, Chemistry of Materials, 24 (2012) 1995-2001.
[113] G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological Control for High Performance, Solution- processed planar heterojunction perovskite solar cells, Advanced Functional Materials, 24 (2013) 151-157.
[114] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Accurate measurement and characterization of organic solar cells, Advanced Functional Materials, 16 (2006) 2016-2023.
[115] C. Waldauf, M.C. Scharber, P. Schilinsky, J.A. Hauch, C.J. Brabec, Physics of organic bulk heterojunction devices for photovoltaic applications, Journal of Applied Physics, 99 (2006) 104503-104506.
[116] C.-M. Hsu, W.-T. Wu, H.-H. Lee, Turn-on voltage reduction of organic light-emitting diode using a nickel-doped indium tin oxide anode prepared by single target sputtering, Displays, 29 (2008) 268-272.
[117] C.-M. Hsu, W.-T. Wu, Improved characteristics of organic light-emitting devicesby surface modification of nickel-doped indium tin oxide anode, Applied Physics Letters, 85 (2004) 840-842.
[118] C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Origin of the open circuit voltage of plastic solar cells, Advanced Functional Materials, 11 (2001) 374-380.
[119] V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens, Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells, Journal Applied Physics, 94 (2003) 6849-6854.
[120] A. Manor, E.A. Katz, Open-circuit voltage of organic photovoltaics: Implications of the generalized einstein relation for disordered semiconductors, Solar Energy Material and Solar Cells, 97 (2012) 132-138.
[121] R.A.J. Janssen, J. Nelson, Factors limiting device efficiency in organic photovoltaics, Adanced Materials, 25 (2013) 1847-1858.
[122] M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—Towards 10 % energy-conversion efficiency, Adanced Materials, 18 (2006) 789-794.
[123] M.F. Lo, T.W. Ng, T.Z. Liu, V.A.L. Roy, S.L. Lai, M.K. Fung, C.S. Lee, S.T. Lee, Limits of open circuit voltage in organic photovoltaic devices, Applied Physics Letters, 96 (2010) 113303.
[124] L.-M. Chen, Z. Xu, Z. Hong, Y. Yang, Interface investigation and engineering–achieving high performance polymer photovoltaic devices, Journal Material Chemistry, 20 (2010) 2575-2598.
[125] V.D. Mihailetchi, L.J.A. Koster, P.W.M. Blom, Effect of metal electrodes on the performance of polymer:fullerene bulk heterojunction solar cells, Applied Physics Letters, 85 (2004) 970.
[126] C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, P. Denk, Effect of LiF/metal electrodes on the performance of plastic solar cells, Applied Physics Letters, 80 (2002) 1288-1290.
[127] A. Gadisa, M. Svensson, M.R. Andersson, O. Inganas, Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative, Applied Physics Letters, 84 (2004) 1609-1611.
[128] J. Liu, Y. Shi, Y. Yang, Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices, Advanced Functional Materials, 11 (2001) 420-424.
[129] E. Edri, S. Kirmayer, D. Cahen, G. Hodes, High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite, The Journal of Physical Chemistry Letters, 4 (2013) 897-902.
[130] J.H. Noh, N.J. Jeon, Y.C. Choi, M.K. Nazeeruddin, M. Gräzel, S.I. Seok, Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material, Journal of Materials Chemistry A, 1 (2013) 11842-11847.
[131] H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces, Advanced Materials, 11 (1999) 605-625.
[132] G. Liu, W. Jaegermann, J. He, V. Sundström, L. Sun, XPS and UPS characterization of the TiO2/ZnPcGly heterointerface:  Alignment of energy levels, The Journal of Physical Chemistry B, 106 (2002) 5814-5819.
[133] E.L. Ratcliff, A. Garcia, S.A. Paniagua, S.R. Cowan, A.J. Giordano, D.S. Ginley, S.R. Marder, J.J. Berry, D.C. Olson, Investigating the influence of interfacial contact properties on open circuit voltages in organic photovoltaic performance: Work function versus selectivity, Advanced Energy Materials, 3 (2013) 647-656.
[134] H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.-G. Park, J. Bisquert, Mechanism of carrier accumulation in perovskite thin-absorber solar cells, Nature Communications, 4 (2013) 1-7.
[135] G. Li, R. Zhu, Y. Yang, Polymer solar cells, Nature Photonics, 6 (2012) 153-161.
[136] B.E. Hardin, H.J. Snaith, M.D. McGehee, The renaissance of dye-sensitized solar cells, Nature Photonics, 6 (2012) 162-169.
[137] G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, 342 (2013) 344-347.
[138] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342 (2013) 341-344.
[139] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3 (2011) 4088-4093.
[140] A. Abrusci, S.D. Stranks, P. Docampo, H.-L. Yip, A.K.Y. Jen, H.J. Snaith, High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers, Nano letters, 13 (2013) 3124-3128.
[141] P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nature Communications, 4 (2013) 2761.
[142] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells, Energy & Environmental Science, 7 (2014) 399-407.
[143] B. Cai, Y. Xing, Z. Yang, W.-H. Zhang, J. Qiu, High performance hybrid solar cells sensitized by organolead halide perovskites, Energy & Environmental Science, 6 (2013) 1480-1485.
[144] B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca, H.-G. Boyen, Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach, Advanced materials, 26 (2014) 2041-2046.
[145] J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy & Environmental Science, 6 (2013) 1739-1743.
[146] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–Organic hybrid nanostructured solar cells, Nano Letters, 13 (2013) 1764-1769.
[147] H.J. Snaith, Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells, The Journal of Physical Chemistry Letters, 4 (2013) 3623-3630.
[148] N.-G. Park, Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, The Journal of Physical Chemistry Letters , 4 (2013) 2423-2427.
[149] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells, Energy & Environmental Science, 7 (2014) 399-407.
[150] M.H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P.P. Boix, N. Mathews, Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells, Chem. Comm., 49 (2013) 11089-11091.
[151] Y.-F. Chiang, J.-Y. Jeng, M.-H. Lee, S.-R. Peng, P. Chen, T.-F. Guo, T.-C. Wen, Y.-J. Hsu, C.-M. Hsu, High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate, Physical Chemistry Chemical Physics, 16 (2014) 6033-6040.
[152] F. Xi, F. Guojia, C. Fei, Q. Pingli, H. Huihui, L. Yongfang, Enhanced performance and stability in PBDTTT-C-T : PC70BM polymer solar cells by optimizing thickness of NiO x buffer layers, Journal of Physics D: Applied Physics, 46 (2013) 305106.
[153] S.-Y. Park, H.-R. Kim, Y.-J. Kang, D.-H. Kim, J.-W. Kang, Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer, Solar Energy Materials and Solar Cells, 94 (2010) 2332-2336.
[154] J.R. Manders, S.-W. Tsang, M.J. Hartel, T.-H. Lai, S. Chen, C.M. Amb, J.R. Reynolds, F. So, Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells, Advanced Functional Materials, 23 (2013) 2993-3001.
[155] S. Powar, T. Daeneke, M.T. Ma, D. Fu, N.W. Duffy, G. Götz, M. Weidelener, A. Mishra, P. Bäuerle, L. Spiccia, U. Bach, Highly efficient p-type dye-sensitized solar cells based on Tris(1,2-diaminoethane)Cobalt(II)/(III) electrolytes, Angewandte Chemie International Edition, 52 (2013) 602-605.
[156] A. Nattestad, A.J. Mozer, M.K.R. Fischer, Y.B. Cheng, A. Mishra, P. Bauerle, U. Bach, Highly efficient photocathodes for dye-sensitized tandem solar cells, Nature Materials, 9 (2010) 31-35.
[157] F. Odobel, Y. Pellegrin, Recent advances in the sensitization of wide-band-gap nanostructured p‐type semiconductors. photovoltaic and photocatalytic applications, The Journal of Physical Chemistry Letters, 4 (2013) 2551−2564.
[158] N.-G. Park, Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell, The Journal of Physical Chemistry Letters, 4 (2013) 2423-2429.
[159] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process, Journal of the American Chemical Society, 136 (2013) 622-625.
[160] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499 (2013) 316-319.
[161] M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501 (2013) 395-398.
[162] G.P. Smestad, F.C. Krebs, C.M. Lampert, C.G. Granqvist, K.L. Chopra, X. Mathew, H. Takakura, Reporting solar cell efficiencies in solar energy materials and solar cells, Solar Energy Materials and Solar Cells, 92 (2008) 371-373.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw