進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2507201402442400
論文名稱(中文) 金屬鉬在氧化物吸附過程所造成的同位素分化效應: 實驗室評估
論文名稱(英文) Molybdenum isotopic fractionation during ferrite oxide adsorption: Experimental evaluation
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 102
學期 2
出版年 103
研究生(中文) 李昇憲
研究生(英文) Sheng-Hsien Li
學號 l46011201
學位類別 碩士
語文別 英文
論文頁數 64頁
口試委員 指導教授-游鎮烽
口試委員-楊懷仁
口試委員-何恭算
中文關鍵字   同位素分化  鐵氧化物  吸附  脫附 
英文關鍵字 Molybdenum  Mo isotope fractionation  ferrite oxide  adsorption  desorption. 
學科別分類
中文摘要 摘要
由於Mo對氧化還原作用極為靈敏,近年來藉由質譜儀分析精準度的提高,更確立了鉬在研究海洋之古氧化還原環境扮演著重要的角色。現代海水中,Mo主要以MoO42-的形式存在,但在不同的氧化還原條件下,Mo會以Mo4-xSx等其它型態被隔絕於沉積物內。在富氧(oxic)環境下,Mo以鐵-錳氧化物的吸附為進入沉積物的主要過程,其同位素比值約為δ97/95Mo = -0.5‰。而在還原(reducing)環境下,Mo以硫化物(MoOxS4-x)形態存在於沉積物內,其同位素比值約為δ97/95Mo = 0~1.6‰,因此在不同氧化還原環境下鉬同位素的比值有所差異。本研究乃觀察在不同吸附條件下鉬同位素的分化程度,藉此探討鉬同位素被鐵氧化物吸附時產生同位素分化的機制。而水溶液中δ97/95Mo之比值則是利用AG 1-X8樹脂進行純化,將鉬與其他干擾元素(鎘、鋯、銣)分離再以多接收器感應耦合電漿質譜儀(MC-ICP-MS, Neptune)進行測量。此外為了修正質譜儀之同位素分化與偏移,吾人於分析前添加鋯(Zr)至樣品中以EEN (Empirical External Normalization)及SSB (Standard Sample Bracketing)方法進行修正。
綜合本研究結果可得知,溶液在pH值為酸性情況下有較良好的吸附效果,尤其在pH 2.75時吸附率可達95%。在同位素吸附動力模型實驗中得知,奈米級鐵氧化物在吸附過程造成明顯的同位素分化且欲達到同位素平衡需24小時;由pH值效應說明了鉬同位素在不同的pH下具有相當高的靈敏度其差異高達0.84‰ (0.43~1.27‰),證明了環境中的pH值改變亦會造成同位素分化,且受控於水溶液中不同鉬物種的影響。
英文摘要 Abstract
With the advance of MC-ICP-MS, it has become possible to measure mass-dependent variations in the isotopic compositions of many transition metals to previously unattainable levels of precision. The Molybdenum (Mo) isotopic fractionation has been applied successfully as a redox proxy in marine environments. Mo occurs as Mo (VI) anion molybdate, MoO42-, in seawater and Mo4-xSx in marine sediments. The latter species were converted from MoO42- and MoS42-, and finally to form other sulfides. The Mo isotopic composition (δ97/95Mo) in seawater is ~2‰ heavier than of ferromanganese crusts or nodules, as a function of redox states. However, under the reducing environment, Mo4-xSx was sequestered in suboxic or anoxic sediments with δ97/95Mo value of 0~1.6‰. Also, we presented Mo isotope determination method using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS, Neptune) with a combined standard-sample bracketing (SSB) procedures and empirical external normalization (EEN) for mass bias correction during measurement. T he chemical separation using AG 1-X8 resin was applied to purify Mo from potential interference elements (Zr and Rb).
In summary, the adsorption rate increased with decreasing pH and the optimal adsorption occurred at pH 2.75 and the adsorption rate could be up to 95%. Our results suggested that the isotopes achieved exchange equilibrium between solid and aqueous phased after 24h. The lighter isotope was preferentially adsorbed onto the Fe3O4 particles, and resulted in an isotopic heavier Mo in solution. The δ 97/95Mo under the range of pH 1.85 to 7.53 has relative values from 0.16 to -1.11‰. We proved that not only the differing redox state could influence the fractionation factors, but the differing pH could significantly impact on the fractionation factors. The significance of pH condition on Mo isotope fractionation was evident, and the driven factor is predominated controlled by the Mo chemical species.
論文目次 Table of content
摘要……………………………………………………………………………........... I
Abstract …………………………………………………………………………….. II
Acknowledgment…………………………………………………………………... IV
Table of content…………………………………………………………………….. V
List of Tables……………………………………………………………………. VII
List of Figures…………………………………………………………………… VII
Chapter 1: Introduction……………………………………...……………………….. 1
1.1 Mo application in industry………………….………………………………. 1
1.2 Mo budget in the ocean……………………………………………………... 2
1.3 Mo isotope fractionation in the ocean………………………………………..4
1.4 Aim of this study……………………………………………………………. 6
Chapter 2: Methodology…………………………………………………………... 10
2.1 Introduction……………………………………………………………...… 10
2.2 Preparation of Fe3O4…………………………………………………..…… 12
2.3 Characterization of ferrite…………………………………………………. 12
2.4 Mo adsorption……………………………………………………………... 13
2.5 Mo desorption …………………………………………………………..… 13
2.6 Instrumentation…………………………………………………………….. 14
2.6.1 Introduction………………………………………………………… 14
2.6.2 Instrumental Mass Fractionation Laws……………..……………… 16
2.6.3 Empirical External Normalization……………………………..…… 17
2.7 Chemical separation ………………………………………………………. 19
2.8 Analytical procedure……………………………………………….……… 21
2.8.1 Mo concentration analysis……………………………………….…. 21
2.8.2 Mo isotope analysis………………………………………………… 22
Chapter 3: Result and discussion………………………………………………..….. 24
3.1 Characterization of adsorbent…………………………………………...…. 24
3.2 Effect of pH……………………………………………………………..…. 26
3.3 Adsorption kinetic models………………………………………………… 29
3.4 Adsorption isotherms……………………………………..……………….. 33
3.5 Mo desorption………………………………………………………….….. 38
3.6 Isotopic fractionation………………………………………………………. 40
3.7 Isotope systematic for pH effect………………………………………….... 42
3.8 Mass balance versus desorption isotopic fractionation……………………. 49
Chapter 4: Implication for paleoredox research…………………………………... 52
Chapter 5: Conclusion…………………………………………………………….. 55
References…………………………………………………………………………... 57
Appendix I……………………………………………………………………………. 63

List of Tables
Table 1 Operational categories of redox environments classified after the
presence/absence of oxygen and sulfide in the water column and in the pore water
of the sediments…………………………………………………………. 8
Table 2 Instrumental average mass bias…………………………………………….. 17
Table 3 Mo purification standard operation procedures……………………………. 20
Table 4 The parameters of the adsorption kinetic models…………………………... 31
Table 5 Value of Langmuir and Freundlich isotherm constants……………………. 37
Table 6 Maximum adsorption capacity (Qmax)of some molybdate adsorbents........... 37
Table 7 The data of Δ97/95Mo of Mo between liquid and solid phases versus mass balance
i n f e r r e d … … … … … … … … … … … … … … … … … … … … … … … … . 4 6
Table 8 The data of Δ97/95Mo of Mo between liquid and solid phases versus mass balance
infer red and previous studies………………………………………. . . 47
Table 9 The data of Δ97/95Mo of Mo between liquid and solid phases versus new mass
balance inferred…………………………………………………………….… 49
List of Figures
Figure 1.1 Relative abundances of nature occurring Mo isotopes by IUPAC data…... 3
Figure 1.2 Oceanic Mo mass balance budget………………………………………… 4
Figure 1.3 Schematic summarizing Mo behavior under various diagenetic regimes... 7
Figure 1.4 Sulfidation of Mo as a function of the concentration of H2S (aq)………... 8
Figure 1.5 Summary of existing Mo isotope data from natural samples.……………. 9
Figure 2.1 Rotary shaker at EDSRC………………………………………………... 10
VIII
Figure 2.2 A picture of HR-ICP-MS (Element 2, Thermo-Fisher Scientific) at
EDSRC……………………………………………………………………….. 11
Figure 2.3 A picture of MC-ICP-MS (Neptune, Thermo-Fisher Scientific) at
EDSRC………………………………………………………………………… 14
Figure 2.4 Schematic diagram of the Thermo Scientific Neptune, showing major
components…………………………………………………………………… 15
Figure 2.5 Flow chat for EEN Mo isotope combined with SSB analytic protocol…. 18
Figure 2.6 Elution curve of the Mo in Bio-Rad AG1-X8 by using muti-element
solution……………………………………………………………………….. 20
F i g u r e 2 . 7 T h e p i c t u r e o f IC P -OE S ( T h e rmo - F i s h e r , i C AP ) a t
EDSRC……………………………………………………………………….. 21
Figure 2.8 Schematic of standard-sample bracketing method……………………… 23
Figure 3.1 (a) Scanning electron micrograph (SEM) ………………………………. 25
Figure 3.1 (b) X-ray diffraction pattern of synthesized ferrite……………………… 25
Figure 3.2A Effect of pH. …………………………………………………………... 27
Figure 3.2B Effect of pH. …………………………………………………………... 27
Figure 3.3 Distribution of Mo(VI) species in equilibrium solution as a function of
pH…………………………………………………………………………… 28
Figure 3.4 Effect of the contact time on Mo adsorption rate……………………….. 30
Figure 3.5 Pseudo-first-order models……………………………………………….. 31
Figure 3.6 Pseudo-second-order models……………………………………………. 32
Figure 3.7 Maximum adsorption capacity…………………………………………... 35
Figure 3.8 Langmuir adsorption isotherms of Mo onto Fe3O4……………………… 36
Figure 3.9 Freundlich adsorption isotherm of Mo onto Fe3O4……………………… 36
Figure 3.10(a) The rates of Mo(VI) desorption from magnetic ferrite after reacting with 0.1
N NaOH solutions for 30 min at 27℃……………………………… 39
IX
Figure 3.10(b) The rates of Mo(VI) desorption from magnetic ferrite after reacting with
0.01 N NaOH solutions for 30 min at 27℃…………………………….. 39
Figure 3.10(c) The rates of Mo(VI) desorption from magnetic ferrite after reacting with
0.001 N NaOH solutions for 30 min at 27℃…………………………… 39
Figure 3.11 δ97/95Mo of Mo remaining in solution versus time (hours) for pH and time
series experiments……………………………………………………………. 41
Figure 3.12 Δ97/95Mo of Mo between liquid and solid phases versus pH series
experiment……………………………………………………………………. 43
Figure 3.13 Δ97/95Mo of Mo between liquid and solid phases versus pH series
experiments………………………………………………………………… 48
Figure 3.14 Distribution of Mo species in equilibrium solution as a function of
pH…………………………………………………………………………..……… 48
Figure 3.15 The δ97/95Mo of desorption series experiment versus mass balance
inferred……………………………………………………………………….. 51
Figure 3.16 The Δδ97/95Mo of desorption series experiment versus mass balance
inferred……………………………………………………………………….. 51
Figure 4.1 Compilation of Mo isotope data from natural and experimental
studies………………………………………………………………………… 54
參考文獻 References
Algeo, T. J. and Lyons, T. W. (2006) Mo–total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21, 1-23.
Anbar, A. D., Duan, T. W., Lyons G. L., Arnold B., Kendall R. A., Creaser A. J., Kaufman G. W., Gordon J., Garvin R. and Buick (2007) A whiff of oxygen before the great oxidation event. Science 317, 1903-1906.
Archer, C. and Vance, D. (2008) The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nat. Geosci. 1, 597-600.
Arnold, G.L., Anbar, A.D., Barling, J., and Lyons, T.W. (2004) Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304, 87-90.
Afkhami, A. and Norooz-Asl, R. (2009) Removal, preconcentration and determination of Mo (VI) from water and wastewater samples using maghemite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 346, 52-7.
Barling, J., Arnold, G.L., and Anbar, A.D. (2001) Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet. Sci. Lett. 193, 447-457.
Barling, J. and Anbar, A.D. (2004) Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet. Sci. Lett. 217, 315-329.
Bertine, K. K. and Turekian, K.K. (1973) Molybdenum in Marine Deposits. Geochim. Cosmochim. Acta 37, 1415-1434.
Calvert, S. E. and Pedersen, T.F. (1993) Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Mar. Geol. 113, 67-88.
Chiron, N. Guilet, R. and Deydier, E. (2003)Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models. Water Res. 37, 3079-3086.
Chappaz, A., Gobeil, C., and Tessier, A. (2008) Geochemical and anthropogenic enrichments of Mo in sediments from perennially oxic and seasonally anoxic lake in Eastern Canada. Geochim. Cosmochim. Acta 72, 170-184.
Dean, W. E., Piper, D. Z. and Peterson, L. C. (1999) Molybdenum accumulation in Cariaco basin sediment over the past 24 k.y.: a record of water-column anoxia and climate. Geology 27, 507-510.
Erickson, B. E. and Helz, G.R. (2000) Molybdenum(VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochim. Cosmochim. Acta 64, 1149-1158.
EI-Moselhy, M. M. Sengupta, A. K. Smith, R. (2011) Carminic acid modified anion exchanger for the removal and preconcentration of Mo(VI) from wastewater. J. Hazard. Mater. 185, 442-446.
Goldberg, T., Archer, C., Vance, D. and Poulton, S. W. (2009) Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochim. Cosmochim. Acta 73, 6502-6516.
Guibal, E., Milot C. and Tobin J. M. (1998) Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Ind. Eng. Chem. Res. 37, 1454-1463.
Gupta, V. K., Gupta M. and Sharma S. (2001) Process development for the removal of lead and – chromium from aqueous solutions using red mudanaluminium industry waste. Water Res. 35, 1125-34.
Hadi, P. M. Gao, P. Barford, J. P. and McKay, G. (2013) Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent. J. Hazard. Mater. 252-253, 166-170.
Hart, S. R. and Zinder, A. (1989) Isotope Fractionation Law – a Test Using Calcium. Int J Mass Spectrom 89(2-3): 287-301 doi:Doi 10.1016/0168-1176(89)83065-4
Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. F. W., Pattrick, R. A. D., Garner C. D., and Vaughan, D. J. (1996) Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim. Cosmochim. Acta 60, 3631-3642.
Helz, G. R., Vorlicek, T.P. and Kahn, M.D. (2004) Molybdenum scavenging by iron monosulfide. Environ. Sci. Technol. 38, 4263-4268.
Jian, J. L., Shi, G. X., Chang, W. Y. and Cheng,W. H. (2012) Removal of Mo(VI) from aqueous solutions using sulfuric acid-modified cinder: kinetic and thermodynamic studies, Toxicological & Environmental Chemistry. 94:3, 500-511
Lyons, T. W. and Severmann S. (2006) A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 70(23), 5698-5722.
Marechal, C., Telouk, P. Albarede, F. (1999). Precise analysis of Cu and Zn isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 156, 251-273.
Martin, J. M. and Meybeck M. (1979) Elemental mass-balance of material carried by major world rivers. Chem. 7, 173-206.
McManus, J., T. F. Nägler, C. Siebert, C. G. Wheat and Hammond, D.E. (2002) Oceanic molybdenum isotope fractionation: Diagenesis and hydrothermal ridge-flank alteration. Geochem. Geophys. Geosys. 3, 2002GC000356.
McManus, J., Berelson, W.M., Severmann, S., Poulson, R.L., Hammond, D.E., Klinkhammer, G.P., and Holm, C. (2006) Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential. Geochim. Cosmochim. Acta 70, 4643-4662.
Moret, A., and Rubio, J. (2003). Sulphate and molybdate ions uptake by chitin-based shrimp shells. Miner. Eng. 16: 715-22.
Moore, L. J., Machlan, L. A., Shields W. R. and Garner E. L. (1974) Internal normalization techniques for high accurate isotope dilution analyses. Application to molybdenum and nickel in standard reference materials. Anal Chem 46:1082-1089
Morford, J. L. and Emerson S. (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63, 1735-1750.
Namasivayam, C., and Sangeetha, D. (2006). Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon. Bioresour. Technol. 97: 1194-200.
Namasivayam, C., and Prathap, K. (2006). Uptake of molybdate by adsorption onto industrial solid waste Fe(III)/Cr(III) hydroxide: Kinetic and equilibrium studies. Environ. Technol. 27: 923-932.
Poulson, R. L., Siebert, C., McManus, J., and Berelson, W.M. (2006) Authigenic
molybdenum isotope signatures in marine sediments. Geology 34, 617-620.
Scott, C., Lyons T. W., Bekker A., Shen Y., Poulton S. W., Chu X. and Anbar A. D. (2007) Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456-460.
Sepehrian, H., Waqif-Husain, S., Fasihi, J. and Mahani, M. K. (2010) Adsorption behavior of molybdenum on modified mesoporous zirconium silicates. Sep. Sci. Technol. 45, 421-426.
Sun, J. Chen, Z. M. Ge, M. Xu, Y. L. and Zhai,M. L. (2013) Selective adsorption of Hg(II) byγ-radiation synthesized silica-graft-vinyl imidazole adsorbent. J. Hazard. Mater. 244-245 94-101.
Siebert, C., T. F. Nagler, F. von Blanckenburg and Kramers, J.D. (2003) Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet. Sci. Lett. 211, 159-171.
Siebert, C., J. McManus, A. Bice, R. Poulson and Berelson, W.M. (2006) Molybdenum isotope signatures in continental margin marine sediments. Earth Planet. Sci. Lett. 241, 723-733.
Sikder, M. T., Mihara, Y., Islam, M. S., Saito, T., Tanaka, S. and Kurasaki, M. (2014) Preparation and characterization of chitosan–caboxymethyl-_-cyclodextrin entrapped nanozero-valent iron composite for Cu(II) and Cr(IV) removal from wastewater. Chem. Eng. J. 236, 378-387.
Tossell, J. A. (2005) Calculating the partitioning of the isotopes of Mo between oxidic and sulphidic species in aqueous solution. Geochim. Cosmochim. Acta 69, 2981-2993.
Vorlicek, T. P., Kahn, M.D., Kasuya, Y., and Helz, G.R. (2004) Capture of molybdenum in pyrite-forming sediments: Role of ligand-induced reduction by polysulfides. Geochim. Cosmochim. Acta 68, 547-556.
Tu, Y. J., You, C. F., and Chang, C. K. (2013) Conversion of waste Mn–Zn dry battery as efficient nano-adsorbent for hazardous metals removal. J. Hazard. Mater. 258-259 102-108.
Tu, Y. J., You, C. F., Chang, C. K., and Wang, S. L. (2013) XANES evidence of arsenate removal from water with magnetic ferrite, J. Environ. Manage. 120, 114–119.
Wasylenki, L. E., Rolfe B. A., Weeks C. L., Spiro T. G. and Anbar A. D. (2008) Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochim. Cosmochim. Acta 72, 5997-6005.
Wille, M., Kramers J. D., Na‥gler T. F., Beukes N. J., Schro‥der S., Meisel T., Lacassie J. P. and Voegelin A. R. (2007) Evidence for a gradial rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta 71, 2417-2435.
Wu, C. H., Lo, S. L. and Lin, C. F. (2000) Competitive adsorption of molybdate, chromate, sulfate, selenate, and selenite on γ-Al2O3. Colloids Surf. A:166, 251-259.
Xiong, Y., Wang, H. T., Lou,Z. N., Shan, W. J., Xing, Z. Q., Deng, G. C., Wu, D. B., Fang, D.W. and Biswas, B. K. (2011)Selective adsorption of molybdenum(VI) from Mo-Re bearing effluent by chemically modified astringent persimmon. J. Hazard. Mater. 186, 1855-1861.
Zheng, Y., Anderson, R.F., van Geen, A. and Kuwabara, J. (2000) Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin. Geochim. Cosmochim. Acta 64, 4165-4178.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw