進階搜尋


下載電子全文  
系統識別號 U0026-2507201321565900
論文名稱(中文) 以第一原理法探討鋰空氣電池電極之石墨電極缺陷密度與過氧化鋰堆積之關係
論文名稱(英文) Investigation on the relation of accumulation of Li2O2 particles and defect density in Li-air battery electrode by first-principle calculation
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 游志仁
研究生(英文) Chih-Jen Yu
學號 N16001367
學位類別 碩士
語文別 中文
論文頁數 54頁
口試委員 指導教授-陳鐵城
口試委員-陳國聲
口試委員-張怡玲
口試委員-屈子正
中文關鍵字 鋰-空氣電池  密度泛函理論  VASP  缺陷密度 
英文關鍵字 Li-air battery  density functional theory  VASP  defect density 
學科別分類
中文摘要 鋰-空氣電池在目前能源發展中,被視為極具發展性的儲能系統之一,主要是因為其理論能量密度就高於鋰離子電池的10倍,但目前仍處於研發階段,主要是放電過程中所產生的過氧化鋰會堆積於空氣電極中的孔洞,導致空氣無法順利參與反應,最後使電池無法繼續運作;因此改善過氧化鋰在空氣電極中的堆積情形,是鋰-空氣電池發展中極具重要的一個項目。本論文採用以密度泛函理論為基礎的第一原理計算軟體-VASP進行模擬,內容主要是針對過氧化鋰在石墨烯上找尋一最佳吸附狀態,並分析其束縛能。並建構不同缺陷密度之石墨烯結構,來探討在不同缺陷密度下對於過氧化鋰間束縛能的影響。模擬結果顯示,過氧化鋰分子容易吸附於石墨烯上方2.719Å處,並較容易吸附於5-8-5缺陷上方,而過氧化鋰間約在相距10Å後彼此間影響較小,推算石墨烯的5-8-5缺陷密度為4.16%。而在此缺陷密度下目前的製備方式是可達成的。
英文摘要 The lithium-air battery is one of the most promisiry technologies among various electrochemical energy storage system. It’s theoretical energy density of this battery is 10 times higher than the traditional Li-ion battery.However,during discharging process precipitation of reaction products Li2O2 on the carbonaceous electrode will block the oxygen pathway. Therefore, how to improve the accumulation phenomenon of Li2O2 particles
is main purpose of this study and significantly limits the capacity of this battery. In this study, the first principle calculation based on the density functional theory was adopted to investigate the adopted to investigate the adsorption condition of Li2O2 particles on grapheme by using VASP. Binding energies of the adsorption under different density of lattice defect in grapheme structure were evaluated individually. The numerical results show that Li2O2 prefers to nucleate and grow near the 5-8-5 lattice defects sites 2.719 Å above the grapheme surface. As the distance between two Li2O2 particles is longer 10 Å, the interaction between Li2O2 particles become significantly reduced. In other words, Li2O2 particles are easily to adsorb on grapheme structure with 4.16% of 5-8-5 lattice defect density.
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-2研究目的與動機 2
1-3文獻回顧 3
1-4本文架構 9
第二章 研究方法 10
2-1 過氧化鋰介紹 10
2-2石墨烯介紹 12
2-3 模擬方法 14
第三章 基本理論 16
3-1薛丁格方程式 16
3-1-1 波動方程式 16
3-1-2 波函數的物理意義 18
3-2電子系統 19
3-2-1 Born-Oppenheimer近似 20
3-2-2 Hatree近似 22
3-2-3 Hatree-Fock近似 23
3-2-4從頭算起法 23
3-3密度泛函理論 24
3-3-1Thomas-Fermi 模型 25
3-3-2Hohenberg-Kohn 理論 26
3-3-3 Kohn-Shan 方法 26
3-3-4 局部密度函數近似法 28
3-4 自洽方程式 29
3-5 布洛赫理論 31
3-6贋勢法 31
第四章 結果與討論 34
4-1 VASP 34
4-1-1計算細節 34
4-2模型的建立 35
4-3計算流程與結果 35
4-3-1吸附測試 36
4-3-2間距測試 39
4-3-3 建立不同缺陷密度石墨烯 46
第五章 結論與未來展望 50
5-1 結論 50
5-2未來展望 51
參考文獻 52
參考文獻 [1] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium - Air Battery: Promise and Challenges," Journal of Physical Chemistry Letters, vol. 1, pp. 2193-2203, Jul 2010.
[2] J. P. Zheng, R. Y. Liang, M. Hendrickson, and E. J. Plichta, "Theoretical energy density of Li-air batteries," Journal of the Electrochemical Society, vol. 155, pp. A432-A437, 2008.
[3] D. Capsoni, M. Bini, S. Ferrari, E. Quartarone, and P. Mustarelli, "Recent advances in the development of Li-air batteries," Journal of Power Sources, vol. 220, pp. 253-263, Dec 2012.
[4] S. S. Zhang, D. Foster, and J. Read, "Discharge characteristic of a non-aqueous electrolyte Li/O-2 battery," Journal of Power Sources, vol. 195, pp. 1235-1240, Feb 2010.
[5] K. M. Abraham and Z. Jiang, "A polymer electrolyte-based rechargeable lithium/oxygen battery," Journal of the Electrochemical Society, vol. 143, pp. 1-5, Jan 1996.
[6] J. Xiao, D. H. Wang, W. Xu, D. Y. Wang, R. E. Williford, J. Liu, et al., "Optimization of Air Electrode for Li/Air Batteries," Journal of the Electrochemical Society, vol. 157, pp. A487-A492, 2010.
[7] J. Read, "Characterization of the lithium/oxygen organic electrolyte battery," Journal of the Electrochemical Society, vol. 149, pp. A1190-A1195, Sep 2002.
[8] J. Xiao, D. H. Mei, X. L. Li, W. Xu, D. Y. Wang, G. L. Graff, et al., "Hierarchically Porous Graphene as a Lithium-Air Battery Electrode," Nano Letters, vol. 11, pp. 5071-5078, Nov 2011.
[9] L. G. Cota and P. de la Mora, "On the structure of lithium peroxide, Li2O2," Acta Crystallographica Section B-Structural Science, vol. 61, pp. 133-136, Apr 2005.
[10] J. M. Garcia-Lastra, J. D. Bass, and K. S. Thygesen, "Communication: Strong excitonic and vibronic effects determine the optical properties of Li2O2," Journal of Chemical Physics, vol. 135, Sep 2011.
[11] K. C. Lau, R. S. Assary, P. Redfern, J. Greeley, and L. A. Curtiss, "Electronic Structure of Lithium Peroxide Clusters and Relevance to Lithium-Air Batteries," Journal of Physical Chemistry C, vol. 116, pp. 23890-23896, Nov 2012.
[12] C. Y. Su, Y. P. Xu, W. J. Zhang, J. W. Zhao, A. P. Liu, X. H. Tang, et al., "Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors," Acs Nano, vol. 4, pp. 5285-5292, Sep 2010.
[13] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, et al., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, pp. 1312-1314, Jun 2009.
[14] M. Hofmann, D. Nezich, A. Reina, and J. Kong, "In-Situ Sample Rotation as a Tool to Understand Chemical Vapor Deposition Growth of Long Aligned Carbon Nanotubes," Nano Letters, vol. 8, pp. 4122-4127, Dec 2008.
[15] C. Y. Su, A. Y. Lu, C. Y. Wu, Y. T. Li, K. K. Liu, W. J. Zhang, et al., "Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition," Nano Letters, vol. 11, pp. 3612-3616, Sep 2011.
[16] L. Wang, X. Y. Zhang, H. L. W. Chan, F. Yan, and F. Ding, "Formation and Healing of Vacancies in Graphene Chemical Vapor Deposition (CVD) Growth," Journal of the American Chemical Society, vol. 135, pp. 4476-4482, Mar 2013.
[17] S. H. M. Jafri, K. Carva, E. Widenkvist, T. Blom, B. Sanyal, J. Fransson, et al., "Conductivity engineering of graphene by defect formation," Journal of Physics D-Applied Physics, vol. 43, Feb 2010.
[18] O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, A. Tolvanen, K. Nordlund, and J. Keinonen, "Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation," Physical Review B, vol. 81, Apr 2010.
[19] 趙成大, "固體量子化學-材料化學的理論基礎." 2nd ed, 北京: 高等教育出版社, 2003.
[20] J. H. van Vleck, “Nonorthogonality and Ferromagnetism”, Phys. Rev, Vol. 49, No. 3, pp. 232-240, 1936.
[21] P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas”, Phys. Rev, Vol. 136, No. 3B, pp. B864-B871, 1964.
[22] W. Kohn, “Nobel Lecture: Electronic structure of matter—wave functions and density functionals”, Rev. Mod. Phys, Vol. 71, No. 5 pp. 1253-1266, 1998
[23] M. C. Payne, M. P. Teter, D.C. Allan, T. A. Arias, and J. D. Joannopoulas, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients”, Rev. Mod. Phys, Vol. 64, No. 4, pp.1045-1097, 1992.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw