進階搜尋


下載電子全文  
系統識別號 U0026-2507201313454700
論文名稱(中文) 包含產氫工廠及燃料電池的煉油廠氫網路之多目標最適化設計
論文名稱(英文) Multi-Objective Optimal Designs for Hydrogen Networks in Petroleum Refineries with Hydrogen Plants and Fuel Cells
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 姜彥丞
研究生(英文) Yen-Cheng Chiang
學號 N36984030
學位類別 碩士
語文別 中文
論文頁數 94頁
口試委員 指導教授-張珏庭
口試委員-吳煒
口試委員-陳奇中
口試委員-陳逸航
中文關鍵字 氫整合  產氫工廠  燃料電池  二氧化碳排放  多目標最適化 
英文關鍵字 hydrogen integration  hydrogen plant  fuel cell  CO2 emission rate  multi-objective optimization 
學科別分類
中文摘要 氫氣資源整合一直是煉油廠降低生產成本所備受關注的議題之一。在不同氫氣提供與使用單元出入端的物流壓力、流量以及氫氣濃度限制下,我們在本研究中建立了混整數非線性數學規劃模式,進行氫網路成本最適化設計。雖然利用過去所建立的模式也可以有效降低新添加設備的成本及氫氣使用量,但傳統的設計方法中,往往只考量到壓縮機及變壓吸附氣體純化裝置 (pressure swing adsorption, PSA) 的設置。面對未來環保意識高漲的趨勢,最佳氫整合網路結構應須同時達到年總成本 (total annual cost, TAC) 以及二氧化碳排放最小之多重目標。因此,在本研究中我們也將燃料電池及產氫用蒸氣重組工廠的模式也納入最適化的結構設計裡。透過年總成本與二氧化碳總排放速率 (global emission rate) 為目標函數的多目標最適化研究,我們可以合成出同時兼顧經濟與環保的煉油廠氫氣資源分布網路。最後,我們進行一系列的實際案例研究,以驗證所提方法之可行性及有效性。
英文摘要 Integration of hydrogen resources has always been a popular cost-reduction measure in the petroleum refining industry. A mixed-integer nonlinear programming model will be developed for generating the cost-optimal hydrogen network designs according to the pressures, flow rates and hydrogen concentrations of the inlet and/or outlet streams of various hydrogen producers and consumers. Although existing models could also be used to produce low-cost designs, it should be noted that only the compressors and pressure swing adsorption (PSA) columns were considered in the previous studies. To account for the current trends of stricter environmental regulations, the hydrogen resources must be integrated properly to achieve two distinct objectives, i.e., minimum total annual cost (TAC) and minimum CO2 emission rate. For this purpose, the mathematical models of additional units, i.e., fuel cells and steam reforming plants (for producing H2), will be added in the mathematical programs. The trade-off issues between the economic and environmental incentives will then be handled by establishing the Pareto front of the aforementioned multi-objective optimization problem. Finally, realistic case studies will be carried out to confirm the feasibility and effectiveness of the proposed approach.
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 IX
符號表 XI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目的 4
1.4 組織章節 5
第二章 氫網路設計模式 6
2.1 超結構 6
2.2 數學規劃模式 9
2.2.1 反應型程序單元 9
2.2.2 壓縮機 13
2.2.3 氫氣純化裝置 15
2.2.4 新添裝置 17
2.2.5 目標函數 19
2.2.5.1 年總成本 19
2.2.5.2 二氧化碳總排放速率 21
2.3 測試例題 24
2.3.1 年總成本設計目標 33
2.3.2 二氧化碳總排放速率設計目標 37
第三章 氫網路之多目標設計 42
3.1 多目標數學規劃步驟 42
3.1.1 Pareto最適解 42
3.1.2 常用解法 44
3.2 基本案例 46
3.2.1 權重和法 54
3.2.2 ε-限制法 56
第四章 案例研討 65
第五章 結論與展望 88
參考文獻 91
參考文獻 Ahmad, M. I., Zhang, N., and Jobson, M., “Modelling and optimisation for design of hydrogen networks for multi-period operation,” J. Clean. Prod., 18(9), 889–899 (2010).
Alves, J. J., and Towler, G. P., “Analysis of refinery hydrogen distribution systems,” Ind. Eng. Chem. Res., 41(23), 5759–5769 (2002).
Chang, C. T., and Hwang, J. R., “A multiobjective programming approach to waste minimization in the utility systems of chemical processes,” Chem. Eng. Sci., 51(16), 3951–3965 (1996).
Chatzimouratidis, A. I., and Pilavachi, P. A., “Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process,” Energy Policy, 36(3), 1074–1089 (2008).
Collodi, G., and Wheeler, F., “Hydrogen production via steam reforming with CO2 capture,” Chem. Eng. Trans., 19, 37–42 (2010).
Ding, Y., Feng, X., and Chu, K. H., “Optimization of hydrogen distribution systems with pressure constraints,” J. Clean. Prod., 19, 204–211 (2011).
El-Halwagi, M. M., “Sustainable Design Through Process Integration : Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement,” Butterworth-Heinemann/Elsevier, U.S.A. (2012).
Elkamel, A., Ba-Shammakh, M., Douglas, P., and Croiset, E., “An optimization approach for integrating planning and CO2 emission reduction in the petroleum refining industry,” Ind. Eng. Chem. Res., 47(3), 760–776 (2008).
Hallale, N., and Liu, F., “Refinery hydrogen management for clean fuels production,” Adv. Environ. Res., 6(1), 81–98 (2001).
Jagannath, A., Elkamel, A., and Karimi, I. A., “Optimization of multi-refinery hydrogen networks,” Proceedings of the 11th international symposium on process systems engineering, Elsevier B. V., 1331–1335 (2012).
Jia, N., and Zhang, N., “Multi-component optimization for refinery hydrogen networks,” Energy, 36, 4663–4670 (2011).
Jiao, Y. Q., Su, H. Y., Liao, Z. W., and Hou, W. F., “Modeling and multi-objective optimization of refinery hydrogen network,” Chin. J. Chem. Eng., 19(6), 990–998 (2011).
Khajehpour, M., Farhadi, F., and Pishvaie, M. R., “Reduced superstructure solution of MINLP problem in refinery hydrogen management,” Int. J. Hydrogen Energy, 34(22), 9233–9238 (2009).
Kumar, A., Gautami, G., and Khanam, S., “Hydrogen distribution in the refinery using mathematical modeling,” Energy, 35(9), 3763–3772 (2010).
Lee, J. U., Han, J. H., and Lee, I. B., “A multiobjective optimization approach for CCS infrastructure considering cost and environmental impact,” Ind. Eng. Chem. Res., 51(43), 14145–14157 (2012).
Liao, Z. W., Wang, J. D., Yang, Y. R., and Rong, G., “Integrating purifiers in refinery hydrogen networks: a retrofit case study,” J. Clean. Prod., 18(3), 233–241 (2010).
Liu, F., and Zhang, N., “Strategy of purifier selection and integration in hydrogen networks,” Chem. Eng. Res. Des., 82(A10), 1315–1330 (2004).
Pilavachi, P. A., Chatzipanagi, A. I., and Spyropoulou, A. I., “Evaluation of hydrogen production methods using the analytic hierarchy process,” Int. J. Hydrogen Energy, 34, 5294–5303 (2009).
Pilavachi, P. A., Stephanidis, S. D., Pappas, V. A., and Afgan, N. H., “Multi-criteria evaluation of hydrogen and natural gas fuelled power plant technologies,” Appl. Therm. Eng., 29(11-12), 2228–2234 (2009).
Posada, A., and Manousiouthakis, V., “Heat and power integration of methane reforming based hydrogen production,” Ind. Eng. Chem. Res., 44(24), 9113–9119 (2005).
Rajesh, J. K., Gupta, S. K., Rangaiah, G. P., and Ray, A. K., “Multi-objective optimization of industrial hydrogen plants,” Chem. Eng. Sci., 56(3), 999–1010 (2001).
Ratan, S., “Hydrogen Management Systems,” KTI Newsletter, Fall, 24–32 (1994).
Smith, R., “Chemical Process Design and Integration,” John Wiley & Sons : Chichester, U.K. and New York (2005).
Smith, R., and Delaby, O., “Targeting flue emissions,” Trans. Inst. Chem. Eng., 69(A), 492 (1991).
Song, J., Park, H., Lee, D. Y., and Park, S., “Scheduling of actual size refinery processes considering environmental impacts with multiobjective optimization,” Ind. Eng. Chem. Res., 41(19), 4794–4806 (2002).
Towler, G. P., Mann, R., Serriere, A. J-L., and Gabaude, C. M. D., “Refinery hydrogen management: cost analysis of chemically-integrated facilities,” Ind. Eng. Chem. Res., 35(7), 2378–2388 (1996).
Wu, W., Liou, Y. C., and Zhou, Y. Y., “Multiobjective optimization of a hydrogen production system with low CO2 emissions,” Ind. Eng. Chem. Res., 51, 2644–2651 (2012).
Zhao, Z., Liu, G., and Feng, X., “The integration of the hydrogen distribution system with multiple impurities,” Chem. Eng. Res. Des., 85(A9), 1295–1304 (2007).
Zhou, L., Liao, Z. W., Wang, J. D., Jiang, B. B., and Yang, Y. R., “Hydrogen sulfide removal process embedded optimization of hydrogen network,” Int. J. Hydrogen Energy, 37(23), 18163–18174 (2012).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw