進階搜尋


下載電子全文  
系統識別號 U0026-2507201115495700
論文名稱(中文) 雙層圓柱正交性非均質圓管受扭力作用下之端部效應
論文名稱(英文) The End Effects of Two-Layer Circular Tubes with Cylindrically Orthotropic Non-homogeneous Materials Under Torsion
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 謝和諺
研究生(英文) He-Yen Hsieh
學號 n16984298
學位類別 碩士
語文別 中文
論文頁數 46頁
口試委員 指導教授-褚晴暉
口試委員-屈子正
口試委員-張怡玲
中文關鍵字 端部效應  圓柱正交性  聖維南定理  狀態空間法  特徵值展開  材料異向性  功能性材料  複合材料 
英文關鍵字 End effects  Cylindrically orthotropic  Non-homogeneous material  State space matrix  Eigen-function expansion 
學科別分類
中文摘要 本文探討雙層圓柱正交性非均質圓管受到扭力作用下端部效應的影響。為了解聖維南定理針對上述問題的適用性,我們考慮結構為圓管,一端固定另一端受純扭矩且側表面無受力。依據彈性力學理論,利用狀態空間法與特徵值展開法解得解析解,最後用數值方法進行比較在不同的材料異向性、功能性材料、複合材料與管壁厚度,去探討端部效應影響的程度。
英文摘要 This thesis discusses the end effects of two-layer circular tubes with cylindrically orthotropic non-homogeneous materials under torsion. The formulation for a fixed-free bi-layer tube is derived by using state space matrix and eigen-function expansion. The numerical results of displacement and stresses are exactly obtained and are compared with the solutions based on the mechanics of materials. The factors that will influence the end effects contain the anisotropy, the non-homogeneity, and the material constants.
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 IX

第一章 緒論 1
1.1前言 1
1.2文獻回顧 1
1.3本文架構 2

第二章 基礎理論 4
2.1彈性力學方程式 4
2.2狀態空間方程式 5
2.3端部效應與聖維南定理 7
2.4特徵值問題與Sturm-Liouville方程式 8

第三章 公式推導 9
3.1問題描述 9
3.2邊界條件與連續條件 10
3.3求解過程 10
3.4退化問題 20
3.4.1雙層圓柱正交性均質圓管 20
3.4.2單層圓柱正交性均質圓管 22
3.4.3單層圓柱正交性均質實心圓桿 23

第四章 數值驗證與結果討論 25
4.1特徵值的計算 26
4.2材料異向性對端部效應的影響 28
4.3非均質材料與複合材料對端部效應的影響 33
4.4管壁厚度對端部效應的影響 41
4.5結論 43

參考文獻 45
參考文獻 [1]Sokolnikoff, I. S., 1956. Mathematical Theory of Elasticity. McGraw-Hill, New York.
[2]Horgan, C. O., 1996. Recent developments concerning Saint- Venant’s principle: a second update. Applied Mechanics Reviews 49, S101-S111.
[3]Folkes, M. J. and Arridge, R. G. C., 1975. The measurement of shear modulus in highly anisotropic materials: the validity of St Venant’s principle. Journal of Physics D: Applied Physics 8, 1053-1064.
[4]Horgan, C. O. and Carlsson, L. A., 2000. Saint-Venant end effects for anisotropic materials. In: Kelly, A., Zweben, C. (Eds.), Comprehensive Composite Materials, vol. 5. Elsevier, Oxford, pp. 5-21.
[5]Christensen, R. M., 1994. Properties of carbon fibers. Journal of the Mechanics and Physics of Solids 42, 681-695.
[6]Lekhnitskii, S. G., 1981. Theory of Elasticity of an Anisotropic Body. Mir, Moscow.
[7]Tarn, J. Q. and Chang, H. H., 2008. Torsion of cylindrically orthotropic elastic circular bars with radial inhomogeneity: some exact solutions and end effects. International Journal of Solids and Structures 45, 303-319.
[8]Tarn, J. Q., 2002b. A state space formalism for anisotropic elasticity. Part II: Cylindrical anisotropy. International Journal of Solids and Structures 39, 5157-5172.
[9]彭世豪, 2008, 實心與中空圓桿在扭力作用下之端點效應, 國立成功大學土木工程研究所碩士論文
[10]Watson, G.N., 1995. A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, Cambridge mathematical Library edition.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw