進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2506201916181800
論文名稱(中文) 以物理混合法合成高比表面積之多重孔洞碳材應用於超級電容及電容脫鹽
論文名稱(英文) Synthesis of Multiporous Carbons with Various Inorganic Template and Biochar via Solvent-Free Method for Supercapacitor and CDI Applications
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 107
學期 2
出版年 108
研究生(中文) 許鈞翔
研究生(英文) Chun-Hsiang Hsu
電子信箱 x22307970@hotmail.com.tw
學號 L36064040
學位類別 碩士
語文別 英文
論文頁數 89頁
口試委員 口試委員-李桐進
口試委員-謝子賢
口試委員-許君漢
指導教授-林弘萍
中文關鍵字 多孔洞碳材  超級電容  電容脫鹽  生物碳 
英文關鍵字 Multiporous carbon  Recycling  Supercapacitor  CDI  Green chemistry 
學科別分類
中文摘要 本研究致力於以簡單製程、環境友善、低成本的方式合成多重孔洞碳材,利用其豐富的孔洞性,提升超級電容及電容脫鹽裝置元件之性能。本次實驗以生物碳(菱殼碳)作為碳源,實驗上以簡單的物理混合法將模板(ZnO、CaCO3、碳酸鋅)與碳源(菱殼碳)混合均勻,透過900℃高溫碳化即得高比表面積孔洞碳材。實驗中不需使用有機溶劑,固態模板與鹼金屬可以鹽酸去除。除此之外,使用奈米等級的氧化鋅當模板時所產生的鋅離子廢液,也能透過酸鹼中和回收再製成奈米模板供再次使用。相較於傳統的氧化矽模板法,此方法不僅不需使用到高毒性的氟化氫,也不用繁瑣的實驗步驟。在量化生產上得以簡化生產流程,同時避免過多的汙染造成環境負擔,達成綠色化學的概念。
以物理混合法合成高比表面積多重孔洞碳材,透過調整模板與碳源比例,其比表面積可達1175~1537 m2 g-1。除此之外,研究結果發現使用氧化鋅作為模板時,可得到中孔比例較高的多孔性碳材;以奈米碳酸鈣為模板時,孔洞性質則多為微孔;另外以回收的明膠-碳酸鋅奈米複合材做為模板時則多為較大的中孔(~30 nm)和大孔。這三種不同的孔洞性質在二極式超級電容方面,以有機電解液1.0 M LiClO4/PC的環境下,皆可以達到130 F g‒1之高比電容值(掃描速率= 5 mV s‒1)。在掃描速率= 500 mV s‒1,碳酸鋅製成的碳材可達到70%保留率,其餘的約為60%。電容脫鹽方面,以氧化鋅為模板做出的碳材其鹽吸附量可高達11.01 mg g-1。研究還發現碳電極的厚度除了會影響吸附量外,也會影響電流效益,增加漏電流。以ANESR公式去計算電阻可發現,兩倍重的碳電極其電阻高達33 Ω。有趣的是,不管以何種金屬氧化物做為模板,所產生之多孔性碳材在電容脫鹽上皆能在10分鐘內達總吸附量90%,這有助於縮短電容脫鹽循環時間,以優化電容脫鹽效益。
英文摘要 In this research, solvent-free physical blending method was used to synthesize multiporous carbons. A new carbon precursor Chinese Water Chestnut biochar (CWCB) was directly blended with inorganic template such as nano-sized CaCO3 and ZnO. It was found that for CWCB precursor, the appropriate pyrolysis duration at 900°C was 3 hours. In addition, the experiment results show that the pore size distribution of the as-prepared porous carbons depends on the dimension of the inorganic template. As a result, ZnO-templated porous carbon has higher content of mesoporous volume than that of the CaCO3-templated porous carbon. Above all, for CWCB multiporous carbons, high specific surface area (up to 1537 m2 g-1) and tunable mesoporous volume can be achieved.
In addition to the synthesis of multiporous carbons, the recycling of zinc ions from wasted solution has also been completed. The synthesis of gelatin-ZnCO3 nanocomposite can be easily done by using biodegradable gelatin as organic template and a simple titration process with K2CO3/NaOH solution. Different from the nano-sized ZnO, the nanocomposite-templated multiporous carbons possess large meso and macropores.
Finally, for supercapacitor application, the as-prepared multiporous carbon electrodes all showed high specific capacitance (~130 F g-1) with good retention rate at 500 mV s-1 scan rate (~70%) and low ohmic resistance in LiClO4/PC electrolyte. As to the CDI system, the highest adsorption capacity of the multiporous carbon electrode was 11.01 mg g-1. Furthermore, the adsorption capacity reached 10.11 mg g-1 within ten minutes suggest that multiporous carbons have fast electrosorption rate.

Key word: Multiporous carbon, Recycling, Supercapacitor, CDI, Green chemistry
論文目次
Content
Chapter 1 Introduction................................1
1.1 Introduction of Porous Materials..................1
1.2 Introduction of Multiporous Carbon Materials......1
1.3 Synthesis of Porous Carbon........................2
1.3.1 Hard Template Method............................2
1.3.2 Soft Template Method............................3
1.4 Capacitor.........................................4
1.4.1 Introduction of Supercapacitor..................4
1.5 Electric Double Layer (EDL).......................6
1.5.1 Helmholtz Model.................................7
1.5.2 Gouy-Chapman or Diffuse Model...................7
1.5.3 Stern Modification of the Diffuse Double Layer..8
1.5.4 Electrical Double Layer in Supercapacitor.......8
1.6 Capacitive Deionization (CDI)....................10
Chapter 2 Experimental Process and Characterization..12
2.1 Materials........................................12
2.2 Synthesis of Multiporous Carbons via Physical
Blending Method..................................13
2.3 Synthesis of Gelatin-ZnCO3 Nanocomposite.........14
2.4 Fabrication of Two-Electrode Supercapacitor......15
2.4.1 Preparation of the Stainless-Steel Current
Collector......................................15
2.4.2 Preparation of the Two-Electrode Supercapacitor
Cell...........................................15
2.5 Characterization of Two-Electrode Supercapacitor
Cell.............................................16
2.5.1 Cyclic Voltammetry (CV)........................16
2.5.2 Calculating Capacitance from CV................16
2.5.3 Galvanostatic Charge and Discharge (CM)........18
2.5.4 Calculating Specific Capacitance from CM
Measurement....................................19
2.5.5 AC Impedance...................................20
2.6 Fabrication of CDI Cell..........................24
2.6.1 Preparation of Carbon Electrodes...............24
2.6.2 Assembling the CDI Cell........................25
2.6.3 CDI Experiment Device..........................26
2.6.4 Characterization of Electrosorption Performance26
2.7 Characterization.................................28
2.7.1 Transmission Electron Microscopy (TEM).........28
2.7.2 Adsorption-Desorption Isotherm Analysis........29
2.7.3 Scanning Electronic Microscopy (SEM)...........34
2.7.4 Thermal Gravimetric Analysis (TGA).............34
2.7.5 Elemental Analyzer (EA)........................35
Chapter 3 Synthesis of Multiporous Carbon via Solvent-Free Method..........................................36
3.1. Research Motivation and Purpose.................36
3.2. Concept of Solvent-Free Physical Blending Method37
3.3. Using Biochar as Carbon Precursor...............39
3.3.1. Pyrolysis Time................................40
3.3.2. Effect of the CaCO3 and ZnO hard template on the pore size distribution of the resulted porous carbons42
3.3.3. Tuning Pore Size Distribution with Different Template/C ratio.....................................43
3.4. Synthesis of Gelatin-ZnCO3 Nanocomposite........44
3.4.1. Addition of K2CO3.............................45
3.4.2. Method of Combing Reactants...................47
3.4.3. Effect of Gelatin.............................49
3.5. Substitution of ZnO to Gelatin-ZnCO3 Nanocomposite Template.............................................52
3.6. Optimization of ZnO/ZnCO3 Mixed-Template to Pitch Ratio................................................57
3.7. Conclusion......................................60
Chapter 4 Applying Multiporous Carbons for Supercapacitor Application..........................................61
4.1. Research Motivation and Purpose.................61
4.2. Multiporous Carbon Supercapacitor...............61
4.2.1. Different Type of Templated-Multiporous Carbon Electrodes...........................................62
4.2.2. Investigate the Effect of Carbon Precursor on Capacitance..........................................66
4.2.3. Influence of SSA, PSD and Morphology on Specific Capacitance..........................................71
Chapter 5 Using Multiporous Carbon for CDI Application.76
5.1. Research Motivation and Purpose.................76
5.2. Characterization of CDI Cell Impedance..........77
5.3. Applying Different Templated Multiporous Carbons for CDI Application......................................80
Chapter 6 Conclusion.................................83
References...........................................85
參考文獻 References
1. Everett, D. H., Pure Appl. Chem 1971, 31, 579-638.
2. Moriguchi, I.; Nakahara, F.; Furukawa, H.; Yamada, H.; Kudo, T., Colloidal Crystal-Templated Porous Carbon as a High Performance Electrical Double-Layer Capacitor Material. 2004, 7 (8), A221.
3. Ding, J.; Chan, K.-Y.; Ren, J.; Xiao, F.-s.,Platinum and platinum–ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions. Electrochimica Acta 2005, 50 (15), 3131-3141.
4. Liang, C.; Dai, S., Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction. Journal of the American Chemical Society 2006, 128 (16), 5316-5317.
5. Tan, I. A. W.; Ahmad, A. L.; Hameed, B. H., Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials 2008, 154 (1), 337-346.
6. Huang, J.; Sumpter, B. G.; Meunier, V., A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes. Chemistry – A European Journal 2008, 14 (22), 6614-6626.
7. Hou, C. H.; Huang, C. Y.; Hu,C. Y., Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions. International Journal of Environmental Science and Technology 2013, 10 (4), 753-760.
8. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
9. Lee, J.; Kim, J.; Hyeon, T., Recent Progress in the Synthesis of Porous Carbon Materials. Advanced Materials 2006, 18 (16), 2073-2094.
10. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered Mesoporous Carbons. Advanced Materials 2001, 13 (9), 677-681.
11. Tanaka, S.; Nishiyama, N.; Egashira, Y.; Ueyama, K., Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chemical Communications 2005, (16), 2125-2127.
12. Miller, J. R.; Simon, P., Electrochemical Capacitors for Energy Management. Science 2008, 321 (5889), 651-652.
13. Kötz, R.; Carlen, M., Principles and applications of electrochemical capacitors. Electrochimica Acta 2000, 45 (15), 2483-2498.
14. Simon, P.; Burke, A., Nanostructured carbons: double-layer capacitance and more. Electrochem. Soc. Interface 2008, 17, 38–44.
15. González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R., Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews 2016, 58, 1189-1206.
16. Endo, M.; Takeda, T.; Kim, Y.; Koshiba, K.; Ishii, K., High Power Electric Double Layer Capacitor (EDLC's); from Operating Principle to Pore Size Control in Advanced Activated Carbons. 2001; Vol. 1.
17. Bagotsky, V., Fundamentals of electrochemistry. . 2005; Vol. 10.
18. Zhang, L. L.; Zhao, X. S., Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009, 38 (9), 2520-2531.
19. Sharma, P.; Bhatti, T. S., A review on electrochemical double-layer capacitors. Energy Conversion and Management 2010, 51 (12), 2901-2912.
20. Barbieri, O.; Hahn, M.; Herzog, A.; Kötz, R., Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 2005, 43 (6), 1303-1310.
21. Kim, Y. J.; Horie, Y.; Ozaki, S.; Matsuzawa, Y.; Suezaki, H.; Kim, C.; Miyashita, N.; Endo, M., Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon 2004, 42 (8), 1491-1500.
22. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science 2006, 313 (5794), 1760-1763.
23. Anderson, M. A.; Cudero, A. L.; Palma, J., Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta 2010, 55 (12), 3845-3856.
24. Demirer, O. N.; Naylor, R. M.; Rios Perez, C. A.; Wilkes, E.; Hidrovo, C., Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water. Desalination 2013, 314, 130-138.
25. Doyle, M.; Fuller, T. F.; Newman, J., Modeling of Galvanostatic Charge and Discharge of the Lithium Polymer Insertion Cell. Journal of the Electrochemical Society 1993, 140 (6), 1526-1533.
26. Conway, B. E.; Angersteinkozlowska, H.; Sattar, M. A.; Tilak, B. V., Study of a Decomposing Hydride Phase at Nickel Cathodes by Measurement of Open-Circuit Potential Decay. Journal of the Electrochemical Society 1983, 130 (9), 1825-1836.
27. Harrington, D.; Conway, B., Kinetic theory of the open-circuit potential decay method for evaluation of behaviour of adsorbed intermediates: Analysis for the case of the H2 evolution reaction. Journal of electroanalytical chemistry and interfacial electrochemistry 1987, 221, 1-21.
28. Conway, B. E.; Bai, L.; Tessier, D. F., Data collection and processing of open-circuit potential-decay measurements using a digital oscilloscope: Derivation of the H-capacitance behaviour of H2-evolving, Ni-based cathodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1984, 161 (1), 39-49.
29. J. Saxena; Saxena, K.; M. Butler; V. B. Jayaram; S. Kundu; N. V. Arvind; and, P. S.; Hachinger, M., A case study of IR-drop in structured at-speed testing. International test conference, 2003.
30. Mansfeld, F., The Effect of Uncompensated IR-Drop on Polarization Resistance Measurements. CORROSION 1976, 32 (4), 143-146.
31. Ajami, A. H.; Banerjee, K.; Mehrotra, A.; Pedram, M. In Analysis of IR-drop scaling with implications for deep submicron P/G network designs, Fourth International Symposium on Quality Electronic Design, 2003. Proceedings., 24-26 March 2003; 2003; pp 35-40.
32. McCumber, D. E., Effect of ac Impedance on dc Voltage‐Current Characteristics of Superconductor Weak‐Link Junctions. Journal of Applied Physics 1968, 39 (7), 3113-3118.
33. Mansfeld, F.; Kendig, M. W.; Tsai, S., Recording and Analysis of AC Impedance Data for Corrosion Studies. CORROSION 1982, 38 (11), 570-580.
34. Mansfeld, F.; Kendig, M. W.; Tsai, S., Evaluation of Corrosion Behavior of Coated Metals with AC Impedance Measurements. CORROSION 1982, 38 (9), 478-485.
35. Mark E. Orazem; Tribollet, B., Electrochemical Impedance Spectroscopy. Wiley-Interscience: 2011; Vol. 48.
36. Jüttner, K., Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochimica Acta 1990, 35 (10), 1501-1508.
37. Mansfeld, F., Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. Journal of Applied Electrochemistry 1995, 25 (3), 187-202.
38. Khalfaoui, M.; Knani, S.; Hachicha, M. A.; Lamine, A. B., New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment. Journal of Colloid and Interface Science 2003, 263 (2), 350-356.
39. Langmuir, D., Environmental Geochemistry. PRENTICE HALL: 1997.
40. Thommes, M., Physical Adsorption Characterization of Nanoporous Materials. Chemie Ingenieur Technik 2010, 82 (7), 1059-1073.
41. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered Mesoporous Carbons. Advacned Material 2001, 13 (9), 677-681.
42. Zhou, L.; Li, H.; Yu, C.; Zhou, X.; Tang, J.; Meng, Y.; Xia, Y.; Zhao, D., Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons. Carbon 2006, 44 (8), 1601-1604.
43. Lei, Z.; Xiao, Y.; Dang, L.; Bai, S.; An, L., Graphitized carbon with hierarchical mesoporous structure templated from colloidal silica particles. Microporous and Mesoporous Materials 2008, 109 (1), 109-117.
44. Lee, J.; Kim, J.; Hyeon, T., Recent Progress in the Synthesis of Porous Carbon Materials. Advacned Material 2006, 18 (16), 2073-2094.
45. Morishita, T.; Soneda, Y.; Tsumura, T.; Inagaki, M., Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon 2006, 44 (12), 2360-2367.
46. Zhao, C.; Wang, W.; Yu, Z.; Zhang, H.; Wang, A.; Yang, Y., Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities. Journal of Materials Chemistry 2010, 20 (5), 976-980.
47. Ferrero, G. A.; Sevilla, M.; Fuertes, A. B., Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors. Carbon 2015, 88, 239-251.
48. Xu, B.; Peng, L.; Wang, G.; Cao, G.; Wu, F., Easy synthesis of mesoporous carbon using nano-CaCO3 as template. Carbon 2010, 48 (8), 2377-2380.
49. Liu, G.-W.; Chen, T.-Y.; Chung, C.-H.; Lin, H.-P.; Hsu, C.-H., Hierarchical Micro/Mesoporous Carbons Synthesized with a ZnO Template and Petroleum Pitch via a Solvent-Free Process for a High-Performance Supercapacitor. ACS Omega 2017, 2 (5), 2106-2113.
50. Murali, S.; Potts, J. R.; Stoller, S.; Park, J.; Stoller, M. D.; Zhang, L. L.; Zhu, Y.; Ruoff, R. S., Preparation of activated graphene and effect of activation parameters on electrochemical capacitance. Carbon 2012, 50 (10), 3482-3485.
51. Shen, K.; Huang, Z.-H.; Yang, J.; Shen, W.; Kang, F., Effect of oxidative stabilization on the sintering of mesocarbon microbeads and a study of their carbonization. Carbon 2011, 49 (10), 3200-3211.
52. Zhang, L.; Yang, X.; Zhang, F.; Long, G.; Zhang, T.; Leng, K.; Zhang, Y.; Huang, Y.; Ma, Y.; Zhang, M.; Chen, Y., Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J Am Chem Soc 2013, 135 (15), 5921-9.
53. Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X.; Janssen, R. A. J., Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells. The Journal of Physical Chemistry B 2005, 109 (19), 9505-9516.
54. Moezzi, A.; Cortie, M.; McDonagh, A., Aqueous pathways for the formation of zinc oxide nanoparticles. Dalton Transactions 2011, 40 (18), 4871-4878.
55. Zhou, D.; Keller, A. A., Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Research 2010, 44 (9), 2948-2956.
56. Bian, S.-W.; Mudunkotuwa, I. A.; Rupasinghe, T.; Grassian, V. H., Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir 2011, 27 (10), 6059-6068.
57. Yamabi, S.; Imai, H., Growth conditions for wurtzite zinc oxide films in aqueous solutions. Journal of Materials Chemistry 2002, 12 (12), 3773-3778.
58. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W., Nanostructured materials for advanced energy conversion and storage devices. Nature Materials 2005, 4 (5), 366-377.
59. Chang, H.; Joo, S. H.; Pak, C., Synthesis and characterization of mesoporous carbon for fuel cell applications. Journal of Materials Chemistry 2007, 17 (30), 3078-3088.
60. Zheng, J. P., The Effect of Salt Concentration in Electrolytes on the Maximum Energy Storage for Double Layer Capacitors. Journal of The Electrochemical Society 1997, 144 (7).
61. Wu, H.; Wang, X.; Jiang, L.; Wu, C.; Zhao, Q.; Liu, X.; Hu, B. a.; Yi, L., The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon. Journal of Power Sources 2013, 226, 202-209.
62. Kershaw, J. R.; Black, K. J. T., Structural Characterization of Coal-Tar and Petroleum Pitches. Energy & Fuels 1993, 7 (3), 420-425.
63. Wang, H.; Yan, T.; Liu, P.; Chen, G.; Shi, L.; Zhang, J.; Zhong, Q.; Zhang, D., In situ creating interconnected pores across 3D graphene architectures and their application as high performance electrodes for flow-through deionization capacitors. Journal of Materials Chemistry A 2016, 4 (13), 4908-4919.
64. Jiang, D.-e.; Jin, Z.; Henderson, D.; Wu, J., Solvent Effect on the Pore-Size Dependence of an Organic Electrolyte Supercapacitor. The Journal of Physical Chemistry Letters 2012, 3 (13), 1727-1731.
65. Kim, T.; Dykstra, J. E.; Porada, S.; van der Wal, A.; Yoon, J.; Biesheuvel, P. M., Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage. Journal of Colloid and Interface Science 2015, 446, 317-326.
66. Qu, Y.; Baumann, T. F.; Santiago, J. G.; Stadermann, M., Characterization of Resistances of a Capacitive Deionization System. Environmental Science & Technology 2015, 49 (16), 9699-9706.
67. Ruiz, V.; Blanco, C.; Granda, M.; Menendez, R.; Santamaria, R., Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. Journal of Applied Electrochemistry 2007, 37 (6), 717-721.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw