進階搜尋


下載電子全文  
系統識別號 U0026-2506201816224600
論文名稱(中文) 結合現場控制系統與管理會計之精實改善評估系統-以光學眼鏡製造為例
論文名稱(英文) A Hybrid Shop-Floor Control System and Management Accounting for Lean Improvement Assessment-Case of Optical Glasses Manufacturing
校院名稱 成功大學
系所名稱(中) 製造資訊與系統研究所
系所名稱(英) Institute of Manufacturing Information and Systems
學年度 106
學期 2
出版年 107
研究生(中文) 李碩軒
研究生(英文) Shuo Hsuan Li
電子信箱 ching93011@gmail.com
學號 P96064045
學位類別 碩士
語文別 中文
論文頁數 124頁
口試委員 指導教授-楊大和
口試委員-王逸琦
口試委員-李家岩
口試委員-洪宗乾
中文關鍵字 精實管理  傳統會計  管理會計  產出會計  J成本制  CART決策樹 
英文關鍵字 Lean Management  Traditional Accounting  Management Accounting  Throughput Accounting  J-Cost  CART 
學科別分類
中文摘要 面臨環境競爭與國際化的趨勢,製造商朝向高品質、低成本、交期準與高彈性目標持續改善,製造商也紛紛導入精實生產方式(Lean Production)縮短生產前置時間、降低在製品存貨,增加製造彈性以提升企業競爭力。精實生產源自豐田汽車,隨後便廣泛使用於不同的產業,以台灣為例在自行車有A-Team的案例,於TFT-LCD、眼鏡製造業亦有成功的案例。
面對競爭環境的改變與新的生產方式的採納,傳統成本會計的績效指標已不敷使用,因此學者提出新的管理會計理論,來因應製造業環境中管理方式的改變,能針對傳統會計無法反應縮短生產前置時間、降低在製品存貨兩項缺點有所改善。本研究將以傳統會計的分批成本制度作為比較基礎,並選擇管理會計中的產出會計、J成本論兩種會計方法,於一家推行精實改善的案例公司進行實證研究。
為了達成成本資訊即時化並導入分批成本制度、產出會計與J成本制度共3種會計方法。本研究以企業資源規劃與現場控制系統兩系統為基礎,設計並建構精實改善評估系統。以實際績效評斷案例公司既有成本制度、傳統會計制度及2種管理會計的績效指標能否適切地反映精實生產所帶來的改善效益。
本研究的成果,有效的利用既有的資訊系統建立精實改善評估系統,提供管理會計資訊作為現場監控、決策支援之用,即時計算成本績效指標並非僅是提供歷史資料,而無法溯及既往。從近兩年的會計資訊顯示,J成本能有效反映出生產週期縮短的效益,並顯示出案例造成案例公司收益性不佳的主要原因是產品完工後,以完成品停留於倉庫時間場所造成,因此,未來可以從業務銷貨方式進行改善。
從績效指標所建立出的決策樹的結果顯示,產出會計的投資報酬率容易受到產品特性影響,因此較適用於作為同一系列產品的評價,而J成本有效將生產週期縮短的效益反應在收益性,解決過去傳統會計忽略時間的問題,也能有效於收益性反映出精實改善之成效。
英文摘要 Facing the trend of competition under globalization, manufacturers dedicate to improving their performance to achieve their goals of higher quality, lower cost, shorter delivery time, and higher flexibility. Therefore, many manufacturers introduced lean production to shorten production lead time, reduce work in progress (WIP), and increase manufacturing flexbility to enhance the competitiveness of enterprises. Lean production originated from Toyota, and was widely used in the different industries.
In the face of the adoption of new production management methods, the performance indicators of traditional accounting is insufficient and outdated. Therefore, scholars have proposed new management accounting theories that can respond to changes in the management methods and improve the disadvantages that the traditional accounting can not respond the main improvement in lean management: shortening preduction lead time and reducing WIP.
In this study, I choose two kinds of management accounting technique, one of them is the throughput accounting which is based on the theory of constraint principles. The other one is J-Cost which is proposed by Mr. Tanaka and is based on the Just-in-Time (JIT) concept in Toyota Production System. To provide real-time and related information to manager to make decision timely, I propose the framework called the Lean Kaizen-assessment System (LKS) which can use the data in existing information system, like enterprise resource system, manufacturing execution system. LKS include the data preprocessing module, cost calculating module, and data mining module. The system will progress the data and convert data into valuable information. Finally, system will use website provide corresponding information to the specified user.
An optical glasses manufacturer presented here to be example in this study. The LKS implementation result show that it not only provide historical accounting data but also provide real-time management accounting performance indicator to support decision-making and shop-floor control. Based on the data in the past two years , it suggest that only the J-cost performance indicator, profitability, can effectively reveal the lean management improvement, shortening preduction lead time. Using classification and regression trees (CART) to analyze data in the past two year, only J-cost reveal the waiting time is an important factor. On the other hand, return on investment (ROI), the indicator in throughput accounting, is easily influenced by the product feature, so that it is suitable for evaluating same product family.
論文目次 目錄 vii
表目錄 ix
圖目錄 xi
1. 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究流程 5
1.4 研究架構 6
2. 文獻探討 7
2.1 精實管理 7
2.2 資訊系統 11
2.3 系統分析與設計 17
2.4 管理會計 26
2.5 資料探勘 35
3. 研究方法 40
3.1 系統分析 41
3.2 精實改善評估系統架構提出 43
3.3 成本計算模組 46
3.4 資料探勘 57
4. 案例分析 60
4.1 案例說明 60
4.2 案例公司既有資訊系統 66
4.3 精實改善評估系統架設 74
4.4 資料查詢模組 87
4.5 決策模組設計與呈現 88
5. 結論與建議 104
5.1 研究結論 104
5.2 後續研究建議 105
參考文獻 107
附錄A. DFD資料流程說明 111
附錄B. SQL資料彙整語法 115
附錄C. 資料探勘處理相關圖片 120
參考文獻 2013資通服務產業年鑑編纂小組作 (2013),資通訊服務產業年鑑. 2013. 資訊應用篇。台北:資策會產情所 。
田中正知 (2015),豐田生產的會計思維(趙城立與王志譯)。北京:機械工業出版社。
孟特‧史灣與江‧貝爾 (2002),限制理論與產出會計(曾渙釗譯)。台北:麥格羅‧希爾 。
林東清 (2016),資訊管理-e 化企業的核心競爭能力,六版。台北:智勝文化事業有限公司。
河田信 (2012),回歸原點︰豐田方式的管理會計(趙城立譯)。北京:機械工業出版社。
經濟部統計處 (2018a),「工業產銷存價值統計調查」,(取得日期:2018年5月10日),[available at http://dmz9.moea.gov.tw/gmweb/investigate/InvestigateDB.aspx]
經濟部統計處 (2018b),「工業產品群統計調查」,(取得日期:2018年5月10日),[available at http://dmz9.moea.gov.tw/gmweb/investigate/InvestigateDA.aspx]
張家銘 (2015),「以離散事件模擬與多屬性決策系統探討光學眼鏡製造之精實管理」。成功大學製造資訊與系統研究所學位論文,頁 1-95。
陳思靜 (2017),「管理會計與精實改善之關係探討—以光學眼鏡製造為例」。成功大學工程管理碩士在職專班學位論文,頁 1-62。
陳朝傑 (2007),「限制理論產出會計應用於訂單決策-以TFT LCD產業為例」。交通大學管理學院工業工程與管理學程碩士論文。
陳湘楊 (2004),軟體工程-物件導向程式設計與UML系統分析實作。台北縣:博碩文化股份有限公司。
劉仁傑與巫茂熾 (2012),工具機產業的精實變革。台北:中衛發展中心。
簡禎富與許嘉裕 (2014),資料挖礦與大數據分析。台北:前程文化。
羅志杰,宋晁宇與鄭順仁 (2013),精實生產推動手冊:創造彈性、速度與創新的生產系統。新北:中國生產力中心 。
嚴玉珠,陳慶樑與陳安均 (2004),管理會計。台北:普林斯頓國際。
嚴玉珠,陳慶樑,莊素珍,喬繼英與謝金玲 (2007),成本會計,二版。新北:普林斯頓國際。
蘇迺惠 (2014), 「ERP系統執行與財務報表公告時間落差之時間」。國立中興大學高階經理人碩士在職專班碩士學位論文。
Berry, M. J., & Linoff, G. (1997). Data Mining Techniques: for Marketing, Sales, and Customer Support. Hoboken, New Jersey: John Wiley & Sons.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. New York: Chapman & Hall.
Brookfield, J., Liu, R.-J., & Paul MacDuffie, J. (2008). Taiwan's bicycle industry A-Team battles Chinese competition with innovation and cooperation. Strategy & Leadership, 36(1), 14-19.
Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1998). Discovering Data Mining: from Concept to Implementation. Upper Saddle River, New Jersey: Prentice Hall Press.
Celko, J. (1987). I data flow diagrams. Computer Language, 4, 41-43.
Corbett, T. (1998). Throughput Accounting: TOC's Management Accounting System. Great Barrington, Massachusetts: North River Press.
Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). Knowledge Discovery and Data Mining: Towards a Unifying Framework. Paper presented at the KDD.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining Inference and Prediction (2 ed.). New York: Springer.
Hilton, R. W., & Platt, D. E. (2013). Managerial Accounting: Creating Value in a Dynamic Business Environment. New York: McGraw-Hill.
Hopp, W. J., & Spearman, M. L. (2011). Factory Physics. Long Grave, Illinois: Waveland Press.
Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied statistics, 119-127.
Kleissner, C. (1998). Data Mining for the Enterprise. Paper presented at the System Sciences, 1998., Proceedings of the Thirty-First Hawaii International Conference on (Vol. 7, pp. 295-304).
Liker, J. K. (2004). The Toyota Way: 14 Management Principles from The World's Greatest Manufacturer. NewYork: McGraw-Hill.
McClellan, M. (1997). Applying Manufacturing Execution Systems. Boca Raton, Florida: St. Lucie Press.
MESA International. (1997). MESA White Paper #06: MES Explained: A High Level Vision for Executives. Retrieved from https://services.mesa.org/ResourceLibrary/ShowResource/334444c5-388f-4360-beb4-3c86dc0f4de4
MESA International. (2008). MESA Strategic Initiatives Program. Retrieved from http://www.mesa.org/en/modelstrategicinitiatives/msip.asp
Milborrow, S. (2017). rpart.plot: Plot 'rpart' Models: An Enhanced Version of 'plot.rpart'. Retrieved from https://CRAN.R-project.org/package=rpart.plot
Ohno, T. (1988). Toyota Production System: Beyond Large-Scale Production. Boca Raton, Florida: CRC Press.
Purtell, C. (1993). Manufacturing execution software-can your company afford it or afford not to have it? Manufacturing Marketplace, 90-103.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
Raval, R. R., & Rathod, H. M. (2013). Comparative study of various process model in software development. International Journal of Computer Applications, 82(18),16-19.
Rosenblatt, H. J. (2013). Systems Analysis and Design. Boston, Massachusetts: Cengage Learning.
Royce, W. W. (1987). Managing the development of large software systems: concepts and techniques. Paper presented at the Proceedings of the 9th international conference on Software Engineering (pp. 328-338).
Shaw, M. J., Subramaniam, C., Tan, G. W., & Welge, M. E. (2001). Knowledge management and data mining for marketing. Decision Support Systems, 31(1), 127-137.
Song, Y.-Y., & Ying, L. (2015). Decision tree methods: applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), 130.
Thayer, R. H., Bailin, S. C., & Dorfman, M. (1997). Software Requirements Engineerings. Washington, D.C.: IEEE Computer Society Press.
Therneau, T., Atkinson, B., & Ripley, B. (2017). rpart: Recursive Partitioning and Regression Trees. Retrieved from https://CRAN.R-project.org/package=rpart
Thuraisingham, B. (2000). A primer for understanding and applying data mining. IT Professional, 2(1), 28-31.
Valacich, J., George, J., & Hoffer, J. (2014). Essentials of Systems Analysis and Design. Upper Saddle River, New Jersey: Prentice Hall Press.
Wang, T.-K., Yang, T., Yang, C.-Y., & Chan, F. T. (2015). Lean principles and simulation optimization for emergency department layout design. Industrial Management & Data Systems, 115(4), 678-699.
Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag New York.
Womack, J. P., & Jones, D. T. (1997). Lean thinking—banish waste and create wealth in your corporation. Journal of the Operational Research Society, 48(11), 1148-1148.
Womack, J. P., Womack, J. P., Jones, D. T., & Roos, D. (1990). Machine that Changed the World. New York: Simon and Schuster.
Yang, T., Hsieh, C.-H., & Cheng, B.-Y. (2011). Lean-pull strategy in a re-entrant manufacturing environment: a pilot study for TFT-LCD array manufacturing. International Journal of Production Research, 49(6), 1511-1529.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw