進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2506201414502300
論文名稱(中文) 考慮成本效益之品質機能展開多目標決策模式
論文名稱(英文) A multi-objective decision-making model for Quality Function Deployment considering the cost-effectiveness
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系
系所名稱(英) Department of Industrial and Information Management
學年度 102
學期 2
出版年 103
研究生(中文) 吳佳樺
研究生(英文) Chia-Hua Wu
學號 R36024118
學位類別 碩士
語文別 中文
論文頁數 92頁
口試委員 指導教授-陳梁軒
口試委員-王泰裕
口試委員-謝中奇
口試委員-施勵行
中文關鍵字 品質機能展開  模糊多目標規劃  成本效益 
英文關鍵字 Quality function deployment (QFD)  Fuzzy multiple objective programming models  cost-effectiveness 
學科別分類
中文摘要 品質機能展開(Quality Function Deployment, QFD)是為企業廣泛運用的產品開發工具。透過品質機能展開系統能夠將抽象的顧客需求,轉換為具體的生產或改良步驟,以達到更大的顧客滿意度目標,且為了能對市場的變化做出快速且適當的回應,競爭分析也是一個重要的議題,將這些由顧客所獲得的資訊、其他競爭者及企業本身於市場上的表現等市場資訊,分析運用在執行品質機能展開的過程中。決定生產計劃時亦需考量許多因素,如顧客滿意度、成本、技術困難度等,為一個多目標間相互衝突與矛盾的問題。另一方面,也考量語意模糊、成本與技術困難度為非線性的函數,在有限的資源與目標衝突的限制之下,協助公司高階管理者與品質機能展開團隊,這兩方決策者尋求最佳的解決方案,以減少品質機能展開系統過高或是過低期望的情況發生。此外,本研究並加入經費運用效率的概念,補強單純以成本最小化作為成本的考量,期望能將經費所能帶來效益的效率維持在一定的水準之上。
本研究建構一品質機能展開執行流程,共分為三個階段。第一階段為整合專家意見,考慮專家意見的模糊性質,並利用群體決策的方法將專家們的意見加以整合;第二階段為模糊品質屋方法,將顧客需求轉換為相對應的設計需求,並加入顧客需求與設計需求的競爭分析;第三階段則為決定設計需求執行度的決策模式,以交互式雙層模糊目標規劃來反映企業實際執行品質機能展開的決策過程,希望能藉此方法能夠更快速、更有效率達到新產品的開發與品質改良之目的。藉由八個案例,所求得的結果皆與直覺判斷相符合,亦驗證本研究執行度決策模式的合理性;亦可發現到經費運用效率的限制對於目標達成度具有絕對性的影響。故決策者在運用品質屋制定計畫時,必須謹慎評估相關的資料,以避免採用錯誤的資訊制定決策。
英文摘要 Quality function deployment (QFD) is a customer-driven approach to achieve higher customer satisfaction, in which the design requirements affecting product performance are established to match customer requirements. The first phase of QFD is the development of a so-called house of quality (HOQ). This study presents a three-stage QFD decision making process, as follows: (1) The integration of expert advice, based on an entropy method. In this, the weight of each expert in the HOQ depends on how much information they supply. (2) The fuzzy QFD approach, in which customer requirements (CRs) are converted to the corresponding design requirements (DRs), and then competitive analysis is used to derive competitive priority ratings in order to calculate the final importance of customer requirements and design requirements. (3) A fuzzy mathematical programming model is proposed to determine the fulfillment levels of the DRs. The coefficients in the proposed model is also fuzzy in order to maintain the fuzziness of the linguistic information. Unlike previous models, which only focus on maximizing customer satisfaction and minimizing cost, our model also considers the efficiency with which funds are used as a cost consideration, and thus the resulting product plan can be more cost-effective. A numerical example is used to demonstrate the rationality and superiority of the proposed model. The results of case are consistent with intuition, and also verify the reasonableness of the decision-making model. We found that by limiting the efficiency of the use of funds it is possible to reach the target with an absolute degree of impact. It is thus important that, decision-makers must carefully assess the relevant information when using the QFD approach.
論文目次 摘要 I
Abstract II
誌謝 VI
目錄 VII
表目錄 VIII
圖目錄 IX
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究範圍 4
第四節 研究流程 4
第五節 論文架構 6
第二章 文獻探討 7
第一節 品質機能展開 7
第二節 模糊集合理論 24
第三節 多目標規劃 28
第三章 品質機能展開之決策模式 35
第一節 研究構想 35
第二節 流程建構與模式求解 38
第三節 小結 65
第四章 範例演算 66
第一節 案例說明 66
第二節 案例運算與分析 68
第三節 討論 80
第五章 結論與未來研究方向 83
第一節 研究結論 83
第二節 未來研究方向 84
參考文獻 85
附錄 91
參考文獻 Akao, Y. (1990). Quality Function Deployment: Integrating Customer Requirements into product design: Productivity Press, New York.

Akao, Y., & Mazur, G.H. (2003). The leading edge in qfd: Past, present and future. International Journal of Quality & Reliability Management, 20(1), 20-35.

Armacost, R.L., Componation, P.J., Mullens, M.A., & Swart, W.W. (1994). An AHP framework for prioritizing customer requirements in QFD: An industrialized housing application. IIE Transactions, 26(4), 72-79.

Askin, R.G., & Dawson, D.W. (2000). Maximizing customer satisfaction by optimal specification of engineering characteristics. IIE Transactions, 32(1), 9-20.

Büyüközkan, G., & Feyzioğlu, O. (2005). Group decision making to better respond customer needs in software development. Computers & Industrial Engineering, 48(2), 427-441.

Bellman, R.E., & Zadeh, L.A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141-B-164.

Buckley, J. (1988). Possibility and necessity in optimization. Fuzzy Sets and Systems, 25(1), 1-13.

Cadenas, J., & Verdegay, J. (2000). Using ranking functions in multiobjective fuzzy linear programming. Fuzzy Sets and Systems, 111(1), 47-53.

Chan, L.-K., & Wu, M.-L. (2005). A systematic approach to quality function deployment with a full illustrative example. Omega, 33(2), 119-139.

Chan, L., Kao, H., & Wu, M. (1999). Rating the importance of customer needs in quality function deployment by fuzzy and entropy methods. International Journal of Production Research, 37(11), 2499-2518.

Chen, L.-H., & Chen, C.-N. (2014). Normalisation models for prioritising design requirements for quality function deployment processes. International Journal of Production Research, 52(2), 299-313.

Chen, L.-H., & Ko, W.-C. (2009a). Fuzzy approaches to quality function deployment for new product design. Fuzzy Sets and Systems, 160(18), 2620-2639.

Chen, L.-H., & Ko, W.-C. (2009b). Fuzzy linear programming models for new product design using QFD with FMEA. Applied Mathematical Modelling, 33(2), 633-647.

Chen, L.-H., & Ko, W.-C. (2010). Fuzzy linear programming models for NPD using a four-phase QFD activity process based on the means-end chain concept. European Journal of Operational Research, 201(2), 619-632.

Chen, L.-H., & Weng, M.-C. (2003). A fuzzy model for exploiting quality function deployment. Mathematical and Computer Modelling, 38(5), 559-570.

Chen, L.-H., & Weng, M.-C. (2006). An evaluation approach to engineering design in QFD processes using fuzzy goal programming models. European Journal of Operational Research, 172(1), 230-248.

Cohen, L. (1995). Quality Function Deployment: How to Make QFD Work for You: Addison-Wesley, Reading, MA.

Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613-626.

Farina, M., & Amato, P. (2004). A fuzzy definition of "optimality" for many-criteria optimization problems. IEEE Transactions on Systems, Man and Cybernetics. Part A, Systems and Humans, 34(3), 315-326.

Fung, R.Y., Tang, J., Tu, Y., & Wang, D. (2002). Product design resources optimization using a non-linear fuzzy quality function deployment model. International Journal of Production Research, 40(3), 585-599.

Fung, R.Y., Chen, Y., & Tang, J. (2006). Estimating the functional relationships for quality function deployment under uncertainties. Fuzzy Sets and Systems, 157(1), 98-120.

Griffin, A., & Hauser, J.R. (1993). The voice of the customer. Marketing Science, 12(1), 1-27.

Han, C.H., Kim, J.K., & Choi, S.H. (2004). Prioritizing engineering characteristics in quality function deployment with incomplete information: A linear partial ordering approach. International Journal of Production Economics, 91(3), 235-249.

Han, S.B., Chen, S.K., Ebrahimpour, M., & Sodhi, M.S. (2001). A conceptual QFD planning model. International Journal of Quality & Reliability Management, 18(8), 796-812.

Hannan, E.L. (1981). Linear programming with multiple fuzzy goals. Fuzzy Sets and Systems, 6(3), 235-248.

Hauser, J.R., & Clausing, D. (1988). The house of quality. Harvard Business Reviews 66, 63–73.

Hwang, C.L., & Masud, A.S.M. (1979). Multiple Objective Decision Making-Methods and Applications (Vol. 164): Springer, Berlin.

Inuiguchi, M., & Sakawa, M. (1996). Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test. Fuzzy Sets and Systems, 78(2), 231-241.

Jiménez, M., Arenas, M., & Bilbao, A. (2007). Linear programming with fuzzy parameters: An interactive method resolution. European Journal of Operational Research, 177(3), 1599-1609.

Kano, N., Seraku, N., Takahashi, F., & Tsuji, S. (1984). Attractive quality and must-be quality. The Journal of the Japanese Society for Quality Control, 14(2), 39-48.

Karsak, E.E. (2004). Fuzzy multiple objective programming framework to prioritize design requirements in quality function deployment. Computers & Industrial Engineering, 47(2), 149-163.

Karsak, E.E., Sozer, S., & Alptekin, S.E. (2003). Product planning in quality function deployment using a combined analytic network process and goal programming approach. Computers & Industrial Engineering, 44(1), 171-190.

Kim, K.-J., Moskowitz, H., Dhingra, A., & Evans, G. (2000). Fuzzy multicriteria models for quality function deployment. European Journal of Operational Research, 121(3), 504-518.

Klir, G.J., & Yuan, B. (2002). Fuzzy Sets and Fuzzy Logic, Theory & Applications. International Editions. Pearson Education Taiwan, Taiwan.

Koopmans, T.C. (1951). Analysis of production as an efficient combination of activities. Activity Analysis of Production and Allocation, 13, 33-37.

Kuhn, H.W. (2014). Nonlinear Programming: A Historical View Traces and Emergence of Nonlinear Programming (pp. 393-414): Springer, Basel.

Leekwijck, W.V., & Kerre, E.E. (1999). Defuzzification: Criteria and classification. Fuzzy Sets and Systems, 108(2), 159-178.

Lockamy, A., & Khurana, A. (1995). Quality function deployment: Total quality management for new product design. International Journal of Quality & Reliability Management, 12(6), 73-84.

Luhandjula, M. (1987). Multiple objective programming problems with possibilistic coefficients. Fuzzy Sets and Systems, 21(2), 135-145.

Luhandjula, M., & Rangoaga, M. (2014). An approach for solving a fuzzy multiobjective programming problem. European Journal of Operational Research, 232(2), 249-255.

Lyman, D. (1990). Deployment normalization. Transactions from a second symposium on Quality Function Deployment, a conference co-sponsored by the Automotive Division of the American Society for Quality Control, the American Supplier Institute, Dearborn, MI, and GOALrQPC, Methuen, MA, 307–315.

Park, T., & Kim, K.-J. (1998). Determination of an optimal set of design requirements using house of quality. Journal of Operations Management, 16(5), 569-581.

Partovi, F.Y., & Corredoira, R.A. (2002). Quality function deployment for the good of soccer. European Journal of Operational Research, 137(3), 642-656.

Rommelfanger, H.J. (2007). Optimization of Fuzzy Objective Functions in Fuzzy (Multicriteria) Linear Programs - A Critical Survey (Vol. 42): Springer, Berlin.

Sakawa, M., Nishizaki, I., & Uemura, Y. (2000). Interactive fuzzy programming for two-level linear fractional programming problems with fuzzy parameters. Fuzzy Sets and Systems, 115(1), 93-103.

Sakawa, M., & Yano, H. (1988). An interactive fuzzy satisficing method for multiobjective linear fractional programming problems. Fuzzy Sets and Systems, 28(2), 129-144.

Slowinski, R., & Teghem, J. (1990). Stochastic vs. Fuzzy Approaches to Multiobjective Mathematical Programming Under Uncertainty: Kluwer Academic Publishers Norwell, MA, USA.

Sohn, S.Y., & Choi, I.S. (2001). Fuzzy QFD for supply chain management with reliability
consideration. Reliability Engineering & System Safety, 72(3), 327-334.

Tiwari, R., Dharmar, S., & Rao, J. (1987). Fuzzy goal programming—an additive model. Fuzzy Sets and Systems, 24(1), 27-34.

Vanegas, L., & Labib, A. (2001). A fuzzy quality function deployment (FQFD) model for deriving optimum targets. International Journal of Production Research, 39(1), 99-120.

Wang, R.-C., & Chuu, S.-J. (2004). Group decision-making using a fuzzy linguistic approach for evaluating the flexibility in a manufacturing system. European Journal of Operational Research, 154(3), 563-572.

Wasserman, G.S. (1993). On how to prioritize design requirements during the QFD planning process. IIE Transactions, 25(3), 59-65.

Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.

Zadeh, L.A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 8(3), 199-249.

Zhou, M. (1998). Fuzzy logic and optimization models for implementing QFD. Computers & Industrial Engineering, 35(1), 237-240.

Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw