進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2506201316551900
論文名稱(中文) 含碳酸鈣廢棄物合成氫氧基磷灰石及其吸附應用
論文名稱(英文) The synthesis of hydroxyapatite from calcium-containing wastes and it’s adsorption application
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 謝國鎔
研究生(英文) Kuo-Jung Hsien
電子信箱 littlepig003@yahoo.com.tw
學號 N48941098
學位類別 博士
語文別 中文
論文頁數 162頁
口試委員 指導教授-申永輝
口試委員-蔡文田
口試委員-溫紹炳
口試委員-廖學誠
口試委員-葉茂榮
中文關鍵字 氫氧基磷灰石  水熱法  吸附 
英文關鍵字 Hydroxyapatite  Hydrothermal  Adsorption 
學科別分類
中文摘要 牡蠣殼、蛋殼、粉筆灰皆為明確之廢棄物,每年使用量高故廢棄產量也大,進而形成廢棄處理及環境問題。因牡蠣殼等廢棄物其主要化學成分皆為碳酸鈣且含量頗高,利用此成分特性加以應用期以解決廢棄物之問題為本研究之主要目的。氫氧基磷灰石(HA)為一種非常重要之生醫材料,其主要成分為鈣及磷Ca/P =1.67條件下可得此材料,本研究利用牡蠣殼等廢棄物做為鈣源,磷酸作為磷源,利用水熱法加入氫氧化鈉(NaOH),改變製程中各項參數使其合成氫氧基磷灰石達最佳化,加以燒結穩定獲得合成之氫氧基磷灰石。將合成之氫氧基磷灰石進行對溶液中含Cu2+之吸附研究。
實驗結果顯示於水熱溫度150℃、水熱時間2小時、800℃鍛燒參數條件下,XRD分析繞射結果最為符合HA晶相。水熱溫度若控制於100℃時各項m-HA仍有β-TAP晶相存在而隨水熱溫度提高β-TAP晶相減少顯示HA趨向更穩定。 FTIR官能基分析所製備之m-HA主要為PO43-ν、C-O及CO32-、H-O等官能基,而經過鍛燒後之影響主要為H-O變化。熱重分析顯示所製備之HA於溫度1000℃鍛燒溫度下重量損失僅5%,與市售HA相比差距不大,顯示晶相結構非常穩定。表面特性分析;BET比表面積分析結果為9.6〜11.8m2/g且為type II乙型等溫吸附線,鍛燒前後結果比較為比表面積降低孔洞體積亦降低,顯示HA鍛燒後顆粒愈為緻密。SEM外觀測定發現所製備之HA主要為圓球或圓柱形,粒徑約為< 250nm,表面平滑孔洞較少,呼應比表面積分析結果。牡蠣殼等不同物種所製備HA於特性分析並無明顯差異,顯示牡蠣殼等物種可順利水熱合成HA。
吸附應用實驗發現所製備之m-HA對Cu2+於起始濃度於100ppm以上條件下吸附去除率可達80%以上,吸附容量可達16.9〜18 mg/g。主要為表面官能基與銅離子作用所致。等溫吸附模式Langmuir model R2皆於0.90以上,較符合本吸附研究。Freundlich model中n值大於1,顯見為有利於吸附條件。Kf吸附常數值為P-HA 3.159 > Oy.-HA 3.06 > Egg-HA > Ch.-HA 0.931。動力吸附實驗擬二階方程式R2皆於0.99以上且推估吸附量與實驗吸附量非常相近,顯示此吸附實驗屬化學吸附。
英文摘要 The annual production and consumption of oyster shell, eggshell, and chalk dust are huge, thus resulting waste disposal and environmental problems. The main composition of these waste is high content calcium carbonate. How to utilize the calcium carbonate to solve waste problem is the major objectives of this study. Hydroxyapatite (HA) is a very important biomaterials, which could be obtained under the condition when calcium/ phosphorous ratio equals to 1.67. This study used oyster shell and other waste as calcium source, and phosphoric acid as phosphorous source for HA production. HA was produced by hydrothermal method, while sodium hydroxide was added during the production process. Different factors were adjusted to optimize the HA production process to obtain the stable sintered synthesized HA, which were further applied in the study of copper adsorption from solutions.
The experimental result shows that under 150 ℃ hydrothermal temperature, 2-hour duration, and 800 ℃ calcination, XRD diffraction analysis results corresponded mostly with HA crystalline structure. When hydrothermal temperature is 100 ℃, m-HA still has some β-TAP crystalline structures, which will decrease with hydrothermal temperature rising, forming more stable HA. The functional groups of m-HA prepared for FTIR analysis are primarily PO43-ν, C-O, CO32-, H-O, etc., and calcination mostly influences on the change of H-O. The thermal gravity analysis shows the weight loss of the prepared HA is only 5% under 1000℃. The result is similar with commercially available HA, indicating the crystalline structure is very stable. BET specific surface is 9.6-11.8 m2/g, and corresponds to type II isothermal adsorption curve. The specific surface area and pore volume are decreased after calcination, generating the finer HA particles. SEM shows that the appearance of HA are primarily spherical and cylindrical. The particle size is less than 250 nm with smooth surface and less pores, which is in accordance with specific surface analysis results. The characteristics of HA prepared by different materials have no obvious differences. Oyster shell, eggshell and chalk dust can hydrothermally synthesized into HA successfully.
The prepared m-HA is used in adsorption experiment. When initial concentration of copper is 100 ppm, the removal is above 80%, and adsorption volume is 16.9-18 mg/g. The adsorption is mainly due to the functional groups on the surface and copper ion. The R2 value of the isothermal adsorption model, Langmuir model, is greater than 0.90, corresponding with the experimental result. The n value of Freundlich model is greater than 1, indicating the adsorption favorable condition. The adsorption constants Kf are P-HA 3.159 > Oy.-HA 3.06 > Egg-HA > Ch.-HA 0.931. The R2 values of second-order kinetic adsorption experiments are all greater than 0.99. The presumed adsorption volumes are very similar to experimental result, indicating the experiment is chemical adsorption.
論文目次 中文摘要………………………………….………………………………….II
英文摘要………………………………………………………………….....IV
致謝………………………………………………………………………….VI
目錄………………………………………………………………………..VIII
表目錄……………………………………………………………………...XII
圖目錄…………………………………….……………………………….XIV
符號對照表………………………………………………………………XVII
第一章 緒論………………………..………….…………………….……….1
§1-1研究動機…………………………………….…………………….….1
§1-2研究目的………………………………………...…………….……...2
第二章 文獻回顧………………………………….…………………………3
§2-1本研究含鈣物料相關資料….………………………………………..3
2-1-1蛋殼之構造、成份…………………………………………..……..3
2-1-2蛋殼之相關研究…………………………………………………..3
2-1-3牡蠣殼產量及成分………………………………………..………6
2-1-4牡蠣殼之相關研究……………………………………………..…6
2-1-5三種合成物料之成分比較……………………………………….7
§2-2氫氧基磷灰石(HA)之背景說明……………………...………….….11
2-2-1氫氧基磷灰石組成………………………………………………11
2-2-2氫氧基磷灰石應用………………………………………...…….14
§2-3氫氧基磷灰石之研究…………………….………………………....17
2-3-1國內HA相關學術研究…………….……….………………….. 17
2-3-2國內以HA為題目相關研究專利……………………………….17
2-3-3國際期刊相關HA研究……………………………...…………..20
§2-4氫氧機磷灰石行為特性……..……………………………….……31
2-4-1氫氧基磷灰石離子交換型態…………...……………………….31
2-4-2氫氧基磷灰石(HA)吸附研究……………..…………………….32
2-4-3合成氫氧基磷灰石粉末影響因素………………………………35
2-4-4磷酸鈣鹽類形成..………………………………………………..37
2-4-5磷酸鈣鹽類的高溫特性…………………………………………37
§2-5實驗相關文獻………………………......………………………….43
2-5-1吸附導論……………………………..……………………..........43
2-5-2等溫吸附模式……………………………………………............45
2-5-3等溫吸附曲線……………………………………………............50
2-5-4孔洞大小分佈測定………………………………………………53
2-5-5孔洞型態分類……………………………………………………54
§2-6界達電位(Zeta-potential)….………………………...………..........56
2-6-1界達電位分析原理………………………………………………56
2-6-2零電荷點..…………………………………………………..........57
§2-7主要實驗方法(水熱法)介紹..………………………………...........59
2-7-1(水熱法)概述及原理……………………………………………..59
2-7-2水熱法製備粉體的優點…………………………………………62
第三章 實驗方法…………………………………………………………...64
§3-1實驗方法簡介…..……………………………………….…............64
§3-2原料藥品來源及合成儀器...…………………………….………...66
3-2-1合成材料分析(相關圖示如圖3-2)...…………………...........66
§3-3實驗步驟………………………………..………………………….67
§3-4合成實驗系統…………………………...………………...……….69
第四章 結果與討論……………………………………………………….75
§4-1含鈣廢棄物之處理及合成….…...………...………………............75
4-1-1前處理CO2產量……………..………….………………...........75
4-1-2前處理含鈣量分析…………..…………………………………76
§4-2合成氫氧機磷灰石特性分析…..………………………………….78
4-2-1XRD晶像分析………………..………………………………..78
4-2-1-1三種含鈣物質800℃鍛燒反應..………………………......78
4-2-1-2不同水熱溫度條件……………..………………………….81
4-2-1-3不同pH環境影響………………..………………………...87
4-2-1-4不同水熱控制時間影響…………..……………………….91
4-2-2官能基測定(FTIR)……………………………………………...93
4-2-2-1不同水熱溫度條件FTIR分析……..……………………...93
4-2-2-2不同pH環境影響FTIR分析………..…………………….94
4-2-2-3不同水熱控制時間影響……………..…………………….97
4-2-3熱重分析(TGA/DTG/DSC)…..……………………………...100
4-2-4界達電位測定(Zeta patential).………………………………105
4-2-5表面特性定……..……………………………………………109
4-2-5-1比表面積、孔洞體積…………………………………….109
4-2-5-2孔洞體積與孔徑關係....………………………………...109
4-2-5-3孔洞型態……………..…….……………………………110
4-2-5-4氮氣等溫吸脫附曲線…..…..…………………………...110
4-2-6外觀特性測定(SEM).……..……..…………………………116
4-2-7小結…………………………………………………………122
§4-3吸附應用研究....………………………………………………..123
4-3-1平衡吸附研究…….…………………………………………...124
4-3-1-1不同pH條件下吸附比較..……………………………….124
4-3-1-2不同吸附劑量比較………..……………………………...127
4-3-1-3不同反應時間比較………..……………………………...127
4-3-2 等溫吸附研究………………………………………………133
4-3-3 吸附動力研究…………………..……………………………141
4-3-4小結…………………………………………………………..146
第五章結論………………………………………………………………...147
第六章 建議…………………………………………………….…………149
第七章參考文獻……………………………………………………...........150
參考文獻 [1] A.Corami, S.Mignardi, V.Ferrini, Copper and zinc decontamination from
single-and binary-metal solution using hydroxyapatite, Journal of
hazardous materials, 146,164-170,2007.
[2] A.Corami, F.D.Acapito, S.Mignardi, V.Ferrini, Removal fo Cu
fromaqueous solutions by synthetic hydroxyapatite: EXAFS investigation,
Materials science and engineering B, 149,209-213,2008.
[3]A.C.Queiroz, J.D.Santos, F.J.Monteiro, I.R.Gibson, Adsorption and
release studies of sodium ampicillin from hydroxyapatite and
glass-reinforce hydroxyapatite composite, Biomaterials, 22,
1393-1400,2002.
[4]A.F.Lemos, J.H.G.Rocha, S.S.F.Quaresma, S.Kannan, F.N.Oktar,
S.Agathopoulos, J.M.F.Ferreira, Hydroxyapatite nano-powders produced
hydrothermally from nacreous material, Journal of the European
Ceramic Society, 26, 3639-3646,2006.
[5]A.G.Leyva, J. Marrero, P.D.Smichowski, Sorption of antimony onto
hydroxyapaite, Environ. Sci. Technol.,35, 3669-3675,2 001.
[6]A.Sari, M.Tuzen, D.Citak, M.Soylak, Adsorption characteristics of Cu(II)
and Pb(II) onto expanded perlite from aqueous solution, Journal of
hazardous materials, 148,387-394,2007.
[7]A.Onda, S.Ogo, K.Kajiyoshi, K.Yanagisawa, Hydrothermal synthesis of
vanadate/phosphate hydroxyapatite solid solution, Materials Letters,
62,1406-1409, 2008.
[8]D.Liao, W.Zheng, X.Li, Q.Yang, X. Yue, L.Guo, G.Zeng, Removal of
lead(II) from aqueous solution using carbonate hydroxyapatite extracted
from eggshell waste, Journal of Hazardous Materials, 177, 126-130,
2010.
[9]D.Marchat, D.B.Assollant, E.Champion, Cadmium fixation by synthetic
151
hydroxyapatite in aqueous solution-thermal behavior, Journal of
Hazardous Materials A, 139, 453-460, 2007.
[10]D.M.Ruthven, Principles of Adsorption and Adsorption Process, New
York: Wiley, 1987
[11]E.N.Tamungang, S.Laminsi, P.Ghogomu, D.Njopwouo, J.L.Brisset,
Pollution control of surface water by coupling gliding discharge
treatment with incorporated oyster shell powder, Chemical Engineering
Journal, 173, 303-308, 2011.
[12]E.I.Yang, M.Y.Kim, H.G.Park, A.T.Yi, Effect of partial replacement of
sand with dry oyster shell on the long-term performance of concrete,
Construction and Building Materials, 24, 758-765, 2010.
[13] E.Pehlivan, A.M.Ozkan, S.Dinc, S.Parlayici, Adsorption of Cu2+ and
Pb2+ ion on dolomite powder, Journal of hazardous materials,
167,1044-1049,2009.
[14] F.M.Pellera, A.Giannis , D. Kalderis , K. Anastasiadou , R. Stegmann, J.
Wang, E. Gidarakos, Adsorption of Cu(II) ions from aqueous solutions
on biochars prepared from agricultural by-products, Journal of
environmental management, 96,35-42,2012.
[15] G.Krithiga, T.P.Sastry, Preparation and characterization of a novel bone
graft composite containing bone ash and egg shell powder, Bull.
Mater.Sci.,34, 177-181, 2011.
[16] G.L.Yeo, Y.W.Toon, K.S.Chae, Shear strength and compressibility of
oyster shell-sand mixtures, Environ Earth Sci., 60, 1701-1709, 2010.
[17] G.L. Yoon, B.T. Kim, B.O. kim, S.H. Han, Chemical-mechanical
characteristics of crushed oyster-shell, Waste Management, 23, 825-834,
2002.
[18] G.Stawinski, Partial sequence of human platelet heparitinase and
evidence of its ability to polymerize”, Biochemical and Biohysica Acta,
152
1429,431-438,1999.
[19] G.Gergely, F.Weber, I.Lukacs, A.L.Toth, Z.E.Horvath, J.Mihaly ,
C.Balazsi, Preparation and characterization of hydroxyapatite from
eggshell, Ceramics international, 36,803-806,2010.
[20] H.C.Tsai, S.L.Lo, J.Kuo, Using pretreated waste oyster and clam shells
and microwave hydrothermal treatment to recover boron from
concentrated wastewater, Bioresource Technology, 102, 7802-7806,
2011.
[21] H.D.Ozsoy, H.Kumbur, Adsorption of Cu(II) ions on cotton boll, Journal
of Hazardous materials B, 136,911-916,2006.
[22] I1-S.Kim,P. N.Kumta, Sol-gel synthesis characterization of
nanostructured hydroxyapatite powder, Materials Science and
Engineering B,111,232-236,2004.
[23] I.A.Oke, N.O.Olarinoye, S.R.A.Adewusi, Adsorption kinetics for arsenic
removal from aqueous solution by untreated powder eggshell,
Adsorption, 14, 73-83, 2008.
[24]I.D.Smicklas, S.K.Milonjic, P.Pfendt, S.Raicevic, The point of zero
charge and sorption of cadmium(II) and strontium(II) ions on synthetic
hydroxyapatite, Separation and Purification Technology, 18, 185-194,
2000.
[25]I. Mobasherpour, E. Salahi, M. Pazouki, Removal of divalent cadmium
cations by means of synthetic nano crystallite hydroxyapatite,
Desalination, 266, 142-148, 2011.
[26]I. Mobasherpour, M.S. Heshajin, A. Kazemzadeh, M. Zakeri, Synthesis of
nanocrystalline hydroxyapatite by using precipitation method, Journal of
Alloys and Compounds, 430, 330-333,2007.
[27]J.C.Knowles, S.Callcut, G.Georgiou, Characterisation of the rheological
properties and zeta potential of a range of hydroxyapatite powders,
153
Biomaterials,21,1387-1392,2000.
[28] J.D.Bronzino,”The Biomedical Engineering Handbook”,CRC
Press.Florida,P.562,1995
[29]J.Tian, Y.Zhang, X.Guo, L.Dong, Preparation and characterization of
hydroxyapatite for solid free from fabrication, Ceramics international,
28,299-302,2002
[30]J.Zhang, H.Fu, X.Lu, J.Tang, X.Xu, Removal of Cu(II) from aqueous
solution using the rice husk carbons prepared by the physical activation
process, Bioass and bioenergy, 35, 464-472, 2011.
[31] K. Kandori, S. Oda, M. Fukusmi, Y. Morisada, Synthesis of positively
charged hydroxyapatite nano-crystals and their adsorption behavior pf
proteins, Colloids and Surfaces B:Biointerfaces, 73,140-145,2009.
[32] K. Lin, J. Pan, Y. Chen, R. Cheng, X. Xu, Study the adsorption of phenol
from aqueous solution on hydroxyapatite nanopowders, Journal of
Hazardous Materials,161, 231-240,2009.
[33] L.Y. Huang, K.W. Xu, J. Lu, A study of the process and kinetics of
electrochemical deposition and the hydrothermal synthesis of
hydroxyapatite coatings, J. Mate. Sci., Mate. Med., 11, 667-673,2000.
[34] L.Yan, Y. Li, Z.X. Deng, J. Zhuang, X. Sun, Surfactant-assisted
hydrothermal synthesis of hydroxyapatite nanorods, International Journal
of Inorganic Materials, 3, 633-637,2001.
[35]M.H.A1,W.K.Mekhemer, A.A.Zaghlol, The adsorption of Cu( II) ions on
bentonite- a kinetic study, Journal of colloid and interface
science,283,316-321,2005.
[36] M.H. Fathi, A.Hanifi, Evaluation and characterization of nanostructure
hydroxyapatite powder prepared by simple sol-gel method, Materials
Letters, 61, 3978-3983,2007.
[37]M.H.Kalavathy, T.Karthikeyan, S,Rajgopal, L.R.Miranda, Kinetic and
154
isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber
wood sawdust, Journal of colloid and interface science,
292,354-362,2005.
[38]M.L.F.M. Kede, E. Mavropoulos, N.C.C.da Rocha, A.m. Costa, M.H.P. da
Silva, J.C. Moreira, A.M. Rossi, Polymeric sponges coated with
hydroxyapatite for metal immobilization, Surface & Coatings
Technology, 206, 2810-2816, 2012.
[39]M. Islam, P.C. Mishra, R. Patel, Physicochemical characterization of
hydroxyapatite and its application towards removal of nitrate from water,
Journal of Environmental Management, 911,883-1891, 2010.
[40]M.Monier, D.M.Ayad, A.A.Sarhan, Adsorption of Cu(II) and Ni(II) ions
by modified natural wool chelating fibers, Journal of hazardous materials,
176,348-355,2010.
[41]M.Garg, A.K.Minocha, N.Jain, Environment hazard mitigation of waste
gypsum and chalk:Use in con struction materials, Construcion and
Building materials, 25, 944-949, 2011
[42]M.S.Kim, K.M.Hong, J.G.Chung, Removal of Cu(II) from aqueous
solutions by adsorption process with anatase-type titanium dioxide,
Water research,37,3524-3529,2003.
[43]N.E.Villarreal, A.M.Cruz, R.O.Guerra, J.L.G.Ortega, L.M.T.Martinez,
V.M.Castano, Biomaterials from agricultural waste: Eggshell-based
Hydroxyapatite, Water Air Soil Pollut, 223, 3643-3646, 2012.
[44]N.Li, L.Zhang, Y.Chen, Y.Tian, H.Wang, Adsorption behavior of Cu(II)
onto titanate nanofibers prepared by alkali treatment, Journal of
hazardous materials, 189,265-272,2011.
[45]R.J.Chung, C.Y. Lin, P.Y.Lin, F.I.Chou,T.S.Chin, Effect of hydroxyapatite
nano-particle on properties of modified tricalcium silicates bone cements,
Journal of Medical and Biologic Engineering,23,199-203,2003.
155
[46]R.R. Sheha, Sorption behavior of Zn(II) ions on synthesized
hydroxyapatites, Journal of Colloid and Interface Science 310 (2007)
18–26
[47]S.Babel, T.A.Kurniawan, Low-cost adsorbents for heavy metals from
contaminated water: a review, Journal of hazardous materials,
97,219-243,2003.
[48]S.C.Wu, H.C.Hsu, Y.N.Wu, W.F.Ho, Hydroxyapatite synthesized from
oyster shell powders by ball milling and heat treatment, Materials
characterization, 62,1180-1187,2011
[49]S. Gao, R. Sun, Z. Wei, H. Zhao, H. Li, F. Hu, Size-dependent
defluroidation properties of synthetic hydroxyapatite, Journal of
Fluorine Chemistry, 130, 550-556 , 2009.
[50]S.H. Jang, B.G. Min, Y.G. Jeong, Removal of lead ions in aqueous
solution by hydroxyapatite/polyurethane composite foams, Journal of
Hazardous Materials, 152 ,1285-1292,2008.
[51]S.I.Buscano, Comparative and competitive adsorption of heavy
metals(Cd2+,Cu2+,Ni2+and Zn2+) in aqueous medium onto
chitosan-montmorillionite composite beads, College of engineering
university of the philippines, 2009.
[52]S.J.Gregg and K.S.W.Sing, Adsorption, Surface area and porosity,New
York: Academic Press, 1982.
[53]S.J.Lee, Y.S.Yoon, M.H.Lee, N.S.Oh, Nanosized hydroxyapatite powder
sytnthesized from eggshell and phosphoric acid, Journal of nanoscience
and nanotechnology, 7,4061-4064,2007
[54]S. Jairam, P. Kolar, R.S. Shivappa, J.A. Osborne, J.P. Davis,
KI-impregnated oyster shell as a catalyst for soybean oil
transesterificaion, Bioresource Technology, 104, 329-335, 2012.
[55]S.Kim, H.S. Ryn, H.Shin, H.SukJung, K.S.Hong, In situ observation of
156
hydroxyapatite formation from amorphous calcium phosphate in
calcium-rich solution, Materials Chemistry and Physics,91, 500-506,
2005.
[56]S.Lowell and J.E.Shields, Powder surface area and porosity,3rd ed.,
Chapman and Hall, London, 1991.
[57]S.R.Shukla, R.S.Pai, Adsorption of Cu(II), Ni(II) and Zn(II) on dye
loaded groundnut shells and sawdust, Separation and purification
technology, 43,1-8,2005.
[58]S.Teng, J.Shi, L. Chen, A novel method to synthesize large-sized
hydroxyapatite rods, Journal of crystal growth ,290,683-688, 2006.
[59]S.W. Lee, S.G. Kim, C. Balazsi, W.S. Chae, H.O. Lee, Comparative study
of hydroxyapatite from eggshells and synthetic hysroxyapatite for bone
regeneration, Original Article, 113, 348-355, 2012.
[60]S.Zhang, Z.Guo, J.Xu, H.Niu, Z.Chen, J.Xu, Effect of environmental
condition on the sorption of radiocobalt from aqueous solution to treated
eggshell as biosorbent, J. Radioanal Nucl Chem, 288, 121-130, 2011.
[61]T.C.Hsu, Experimental assessment of adsorption of Cu2+ and Ni2+ from
aqueous solution by oyster shell powder, Journal of hazardous materials,
171,995-1000,2009.
[62]T.C.Hsu, C.C.Yu, C.M.Yeh, Adsorption of Cu2+ from water using raw
and modified coal fly, Fuel,87,1355-1359,2008
[63]T.E.Kose, B.Kivanc, Adsorption of phosphate from aqueous solution
using calcined waste eggshell, Chemical Engineering Journal, 178,34-39,
2011.
[64]T.Navizi, E.Salahi, M.Ghafari, I.Mobasherpour, Influence of tiron
concentration on dispersability and sintering behaviors of hydroxyapatite
in an aqueous system, Ceramics International, 36, 1945-1949, 2010.
[65]T.K.Anee,M.Ashok,M.Palanichamy,S.Narayana Kalkura,” A novel
157
technique to synthesize hydroxyapatite at low temperature”Materials
Chemistry and Physics, 80, 725-730, 2003.
[66]T. Witoon, Characterization of calcium oxide derived from waste eggshell
and its application as CO2 sorbent, Ceramics International, 37,
3291-3298, 2011.
[67]V. Uskokovic, R.Odsinada, S.Djordjevic, S.Habelitz, Dynamic light
scattering and zeta potential of colloidal mixtures of amelogenin and
hydroxyapatite in calcium and phosphate rich ionic milieus, Archives of
oral biology, 56,521-532,2011
[68]V.V. Silva, F.S. Lameires, R.Z. Domingues, Synthesis and
characterization of calcia partially stabilized zirconia-hydroxyapatite
powders prepared by co-precipitation method, Ceramics Internation, 27,
615-620,2001.
[69]W.H.Park, Integrated contructed wetland systems employing alum sludge
and oyster shells as filter media for P removal, Ecological Engineering,
35, 1275-1282, 2009.
[70]W.J. Shih, Y.H. Chen, S.H. Wang, W.L. Li, M.H. Hon, M.C. ang ,Effect
of NaOH(aq) treatment on the phase transformation and morphology of
calcium phosphate deposited by an electrolytic method, Journal of
Crystal Growth, 285, 633–641,2005
[71]W.J.Shih, J.W. Wang, M.C. Wang, M.H. Hon, A study on the phase
transformation of the nanosized hydroxyapatite synthesized by
hydrolysis using in situ high temperature X-ray diffraction, Materials
Science and Engineering C ,26, 1434 – 1438, 2006
[72]W.T.Tsai, K.J.Hsien, H.C.Hsu, C.M.Lin, K.Y.Lin, C.H.Chiu, Utilization
of ground eggshell waste as an adsorbent for the removal of dyes from
aqueous solution, Bioresource Technology , 99, 1623-1629, 2008
[73]Zheng, X.M.Li, Q.Yang, G.M.Zeng, X..Shen,Y.Zhang, J.J.Liu,
158
Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate
hydroxyapatite derived from eggshells waste, Journal of hazardous
materials, 147,534-539,2007
[74]X. Zhang, K.S. Vecchio, Hydrothermal synthesis of htdroxyapatite rods,
Journal of Crystal Growth, 308,133-140 ,2007.
[75]X.Zhang, K. S.Vecchio, Creation of hydroxyapatite (synthetic bone) by
hydrothermal conversion of seashells, Materials Science and Engineering
C,26,1445-1450,2006.
[76]Y.Gao and C.Xu, Synthesis of dimethyl carbonate over waste eggshell
catalyst, Catalysis Today, 190,107-111,2012
[77]Y.H.Lee, S.M.A.Islam, S.J.Hong, K.M.Cho, R.K.Math, J.Y. Heo, H. Kim,
H.D. Yun, Composted oyster shell as lime fertilizer is more effective than
fresh oyster shell, Biosci. Bioetchnol. Biochem., 74, 1517-1521, 2010.
[78]Y.J.Wang, J.H.Chen, Y.X.Cui, S.Q.Wang, D.M.Zhou, Effects of
low-molecular-weight organic acids on Cu(II) adsorption onto
hydroxyapatite nanoparticles, Journal of hazardous materials,
162,1135-1140,2009.
[79]Y.Liu, Q.Cao, F.Luo,J.Chen, Biosorption of Cd2+,Cu2+,Ni2+ and Zn2+
ions from aqueous solution by pretreated biomass of brown algae,
Journal of hazardous materials, 163,931-938,2009.
[80]Y.Liu,D.Hou, G.Wang, A simple wet chemical synthesis and
characterization of hydroxyapatite nanorods, Materials Chemistry and
Physics,86,69-73, 2004.
[81]Y.S.Ok, S.E.Oh, M.Ahmad, S.Hyum, K.R. Kim, D.H.Moon, S.S. Lee, K.J.
Lim, W.T. Jeon, J.E. Yang, Effects of natural and calcined oyster shells
on Cd and Pb immobilization in contaminated soils, Environ Earth Sci.,
61, 1301-1308, 2011.
[82]X.W.Wu, H.W.Ma, L.T.Zhang, F.J.Wang, Adsorption properties and
159
mechanism of mesoporous adsorbents prepared with fly ash removal of
Cu(II) in aqueous solution, Applied surface science, 261,902-907,2012
[83]Y.S.Ok, S.S.Lee, W.T.Jeon, S.E.Oh, Adel R. A. Usman, D.H. M,
Application of eggshell waste for the immobilization of cadmium and
lead in a contaminated soil, Environ Geochem Health, 33, 31-39, 2011.
[84]Y. Wang, J. Chen, K. Wei, S. Zhang, X. Wang, Surfactant-assisted
synthesis of hydroxyapatite particles, Materials Letters,
60,3227-3231,2006.
[85]Y.Yu, R.Wu, M.Clark, Phosphate removal by hydrothermally modified
fumed silica and pulverized oyster shell, Journal of Colloid and Interface
Science, 350, 538-543, 2010.
[86]Y.X.Liu, T.O.Yong, D.X.Yuan, X.Y.Wu, Study of municipal waste
treatment with oyster shell as biological aerated filter medium,
Desalination, 254, 149-153, 2010.
[87]中央畜產學會,台灣雞蛋產業生產效能導向發展策略,畜產報導月刊
59 期2005。
[88]王明光、王敏昭,實用儀器分析,國立編譯館,合記圖書,2003
[89]王彥能,酪胺酸酵素固定於幾丁聚醣/氫氧基磷灰石/銅離子複合薄膜
之催化活性研究,聯合大學化工,碩士論文,2010
[90]王麗雯,以樹枝狀分子指引氫氧基磷灰石奈米粒子之結晶成長研究,
正修科技化工與材料,碩士論文,2007
[91]台灣省農林廳漁業局,“廢棄牡蠣殼處理模式之規劃研究”,國立台灣
海洋大學,1998 年7 月。
[92]台灣省農林廳漁業局,“廢棄牡蠣殼有效利用與維護漁村環境衛生”,
財團法人台灣漁業技術顧問社,1995 年8 月。
[93]林倩如,氫氧基磷灰石/膠原蛋白/透明質酸複合微粒對於間葉幹細胞
160
骨分化之影響,成大生科工程,碩士論文,2009
[94]林冠良,四鈣磷酸鹽骨水泥基本性質研究及熱處理對性質之影響,成
大材料工程,碩士論文,2005
[95]李淯阡,幾丁聚糖/氫氧基磷灰石複合薄膜製備及其對銅離子吸附行
為之探討,聯合大學化學工程,碩士論文,2008
[96]李彥儒,台灣主要經濟貝類廢棄殼研製珍珠粉之可行性研究, 國立
成功大學碩士論文,96 年5 月。
[97]李傳宏、陳利君、葉昱析,Zata 電位測定儀在奈米粉體的應用,工業
材料,第190 期,105-144,2002.
[98]李玉寶,奈米生醫材料Nano biomedical materials,五南出版社,95
[99]李怡萱,低溫電漿改質竹炭與PEEK 表面對沉積HAp 的影響,
[100]李哲榮,“牡蠣殼粉資源化做為水泥膠結材料之研究”,國立台灣海
洋大學碩士論文,94 年6 月
[101]公共電視,我們的島,第653 集,吃一顆好蛋,2012
[102]呂穎智,電漿熔射氟基磷灰石鍍層披覆於鈦合金基材之研究,成大
口腔醫學所,碩士論文,2007
[103]汪健民等,陶瓷技術手冊(下) Ceramic Technology Handbook,經濟部
技術處,1994
[104]吳明峰,以微弧氧化於純鈦金屬上披覆磷灰石陶瓷結構的製程參數
研究,大同大學材料工程,碩士論文,2010
[105]吳玉祥,以尿素作為沉澱劑製備含碳酸根之氫氧基磷灰石的方法,
中華技術學院,2010
[106]吳錫芩、林輝、王子威,一種具磁性的氫氧基磷灰石磁性奈米顆
粒及其製造方法,台灣大學,2009
[107]吳庭安,“回收TFT-LCD 玻璃與回收鈉鈣玻璃混合製造發泡玻璃混
161
合製造發泡玻璃之研究”,國立成功大學學士論文,94 年10 月。同
大學材料工程,碩士論文,2011
[108]周士揚,探討仿生性幾丁聚醣之骨誘導性,台灣科大化學工程,碩
士論文,2009
[109]許欣潔,沸石吸附材製備及其運用於水中有機汙染物之去除,嘉南
藥理科技大學環工系,碩士論文,2006
[110]胡嫻筠,發泡型牡蠣殼水泥板材中和回收雨水水質研究,南亞技術
學院材料應用科技研究所,碩士論文,2011 年
[111]郭思吟,蛋殼廢棄物吸附水中重金屬之能力,東海大學畜產與生物
科技學系,碩士論文,2008。
[112]黃振明,氫氧基磷灰石之晶粒大小對骨母細胞及纖維母細胞增殖的
影響,成大製造工程所,碩士論文,2007
[113]段維新、游雅任、陳錦毅,氫氧基磷灰石粉末、多孔體及其製備方
法,台灣大學,2005
[114]楊崇煒,水熱法與高溫後處理對電漿熔射氫氧基磷灰石塗層微觀組
織及結合強度之效應,成大材料工程,碩士論文,2006
[115]彭志剛,幾丁聚醣/動物明膠/氫氧基磷灰石仿生礦化骨組織工程膜材
之研究,中央化學工程與材料,碩士論文,2005
[116]陳煒奕,磷酸鈣在動物體內機械性質研究碩士論文,成大材料工程,
碩士論文,2004
[117]陳瑾慧、朱建平、丁信智,具有單一不可溶氫氧基磷灰石/鈦鍍膜之
醫學植入物,2002
[118]施威任,奈米級氫氧基磷灰石之合成及燒結,成功大學材料研究所,
博士論文,2007
[119]施博淵,以電化學方式沉積氫氧基磷灰石薄膜於竹炭與不鏽鋼表面,
162
大同大學材料工程,碩士論文,2009
[120]經濟部財產局,中華民國專利資訊檢索系統http://twpat.tipo.gov.tw
[121]蔡文田,含揮發性有機物廢棄之活性碳與觸媒焚化處理研究,台灣
大學環境工程學研究所,博士論文,1994 年
[122]廖家輝,利用溶液化學反應法在常溫下製備氫氧基磷灰石相關之生
醫陶瓷材料,義守大學材料科學與工程學系,碩士論文,2005 年
[123]廖崇惇,探討交聯劑對SBF 仿生幾丁聚醣膜材的影響,台灣科技大
學化學工程系,碩士論文,2011
[124]顏秀崗,在純鈦金屬表面上製備HA/TiO2 雙層塗層的電化學方法,
中興大學,2012
[125]顏秀崗、王銘嘉,具氫氧基磷灰石及明膠的微米球製備方法,中興
大學,2011
[126]劉松村、陳松青、賴慧君、黃琬婷,磷酸二鈣陶瓷、磷酸二鈣與氫
氧基磷灰石之雙相陶瓷及其製造方法,和康生物科技有限公司,2012
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-07-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw