進階搜尋


下載電子全文  
系統識別號 U0026-2506201202383400
論文名稱(中文) Eco-efficiency analysis for roadway projects
論文名稱(英文) Eco-efficiency analysis for roadway projects
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 田允佳
研究生(英文) Huynh Thi Minh Truc
學號 N66997128
學位類別 碩士
語文別 英文
論文頁數 105頁
口試委員 指導教授-張行道
口試委員-張陸滿
口試委員-王維志
口試委員-羅維
中文關鍵字 none 
英文關鍵字 Eco-efficiency indicator  environmental cost  EMA  sustainable development  roadway project 
學科別分類
中文摘要 none
英文摘要 A prerequisite to project-level sustainability appraisal is to develop indicators. The eco-efficiency indicator is recognized as an effective tool to measure sustainability. This study derived indicators to measure eco-efficiency at project and component levels during the roadway life cycle. Conventional cost and environmental cost are two economic performance metrics adopted. Environmental management accounting (EMA) approach is used to identify environmental costs for the roadway project and its components of earthwork, pavement and bridges.
For eco-efficiency analysis, conventional cost over energy consumption and conventional cost over GHG emissions are the two most prominent indicators to assess eco-efficiency in the material production stage, whereas conventional cost over solid waste is the most prominent in the disposal/recycling stage. Conventional cost over material consumption is the most prominent in construction and maintenance stages at the levels of project, pavement, and bridges. Conventional cost over energy consumption and conventional cost over GHG emissions are appropriate for earthwork’s construction stage.
The data from Hanoi-Langson (HL) highway project in Vietnam were used to calculate economic performance, environmental impacts and eco-efficiency. In the four stages, HL highway maintenance spent the largest conventional cost per unit of materials (US$114/ton of materials), energy (US$352/GJ), GHG emissions (US$5,099/ton-CO2e), and solid waste (US$12,426/ton of waste). HL highway’s pavement achieved better eco-efficiency than bridges in the material production, construction and maintenance stages.
論文目次 CHAPTER 1 INTRODUCTION………………………………………………………. 1
1.1 Research Motivation…….…………………………………………………… 2
1.2 Research Objectives, Scope and Limitations……………………………….... 3
1.3 Research Method and Process………………………………………….......... 4
1.4 Thesis Structure…………………………………………………………….... 5
CHAPTER 2 LITERATURE REVIEW ….…………………………..…………….…. 6
2.1 Life Cycle Cost Analysis (LCCA)……………………………...……………. 6
2.1.1 Basic concepts and parameters……..….…….…………….………….. 6
2.1.2 Applications of LCCA to transportation domain……………………… 8
2.2 Life Cycle Assessment (LCA)……..………………………………………… 9
2.2.1 Conceptual basics of LCA method……………….………..………….. 9
2.2.2 Overview of LCA for roadways………………………………………. 12
2.3 Environmental Impacts of Roadways………………………………………... 13
2.3.1 Energy consumption………….………………………………………. 13
2.3.2 GHG emissions…………………………………………….................. 15
2.3.3 Solid waste…………………………………....………………………. 17
2.3.4 Waste water……………………………………………........................ 18
2.4 Eco-Efficiency Indicators……………………………………………………. 19
2.4.1 Concepts of eco-efficiency……………………………………………. 19
2.4.2 Levels of eco-efficiency………………………………………………. 20
2.4.3 Framework of eco-efficiency indicators……………………………… 21
CHAPTER 3 ROADWAY WORK PROCESSES AND COSTS…………………….. 24
3.1 Stages of the Roadway Life Cycle…………………………………………... 24
3.1.1 Material production...…………………………………………………. 25
3.1.2 Construction…………………………………...……………………… 26
3.1.3 Maintenance……. …………………………..……………………….. 28
3.1.4End-of-life…………………………...………………………………… 29
3.2 Conventional Costs of Roadways…………….……………………………... 30
3.2.1 Conventional costs of individual roadway stages...…………………... 30
3.2.2 Material cost…………………………………...……………………… 31
3.2.3 Construction cost..………………………………...………………….. 35
3.2.4 Maintenance cost………………………………...…………………… 38
3.2.5 Disposal cost…………………………………………………..……… 40
3.2.6 Residual values…………………………………...………………….. 41
3.2.7 Conventional life cycle cost………………………...………………… 42
3.3 Environmental costs of roadways…………………………………………… 43
3.3.1 General concepts and contents of EMA……………………………… 44
3.3.2 Adoption of EMA into HL highway….….…………………………… 44
CHAPTER 4 ENVIRONMENTAL IMPACTS OF ROADWAYS…………………… 47
4.1 Environmental Impacts Determination……………………………………… 47
4.1.1 Selection of environmental impact factors…………………………… 47
4.1.2 LCA model for determining environmental impacts………………… 48
4.2 Environmental Impact Calculation…………………………………………. 49
4.2.1 Material consumption………………………………………………… 49
4.2.2 Energy consumption………………………………………………….. 50
4.2.3 GHG emissions….……………………………………………………. 55
4.2.4 Solid waste……………………………………………………………. 57
4.2.5 Supporting of software………………………………………………... 59
4.3 Environmental Impacts of HL highway project……………………………... 60
4.3.1 Environmental impacts from earthwork………………………………. 60
4.3.2 Environmental impacts from pavement………………………………. 62
4.3.3 Environmental impacts from bridges…………………………………. 63
4.3.4 Environmental impacts from HL highway……………………………. 64
4.3.5 Reduced environmental impacts by spending environmental cost…… 65
CHAPTER 5 ECO-EFFICIENCY AND ANALYSIS FOR ROADWAYS………….. 67
5.1 Developing Eco-Efficiency Indicators for Roadways………………………. 67
5.1.1 Model of eco-efficiency analysis……………………………………... 67
5.1.2 General equation for eco-efficiency indicators……………………….. 68
5.1.3 Eco-efficiency indicators at project and component levels…………... 70
5.2 Selection of Prominent Indicators for Roadway Projects…………………… 71
5.2.1 Factors of selection…………………………………………………… 71
5.2.2 Prominent indicators for roadways…………………………………… 72
5.3 Eco-Efficiency Analysis…………………………………………………….. 74
5.3.1 Eco-efficiency at project level………………………………………... 75
5.3.2 Eco-efficiency at component level…………………………………… 77
5.3.3 Comparisons of eco-efficiency at project and component levels……. 81
CHAPTER 6 CONCLUSIONS AND SUGGESTIONS……………………………… 84
6.1 Conclusions…………………………………………………………………. 84
6.2 Research Contribution………………………………………………………. 85
6.3 Suggestions for Future Research……………………………………………. 86
REFERENCES………………………………………………………………………… 88
APPENDICES…………………………………………………………………………. 94
Appendix A Specification of equipment………………………………………… 94
Appendix B Calculation of environmental impacts……………………………... 96
參考文獻 1. Asian Development Bank (ADB) (2011) Feasibility Study on the Ha Noi - Lang Son Expressway Project: VEC Institutional Development Study – Volume I: Final Report.
http://www2.adb.org/Projects/reports.asp?docType=TACR&ctry_id=30&subj_id=&keyword=&pg=2.
2. Alaska Department of Education and Early Development (ADOEED) (1999). Life cycle cost analyses handbook.
3. American society of civil engineers (ASCE) (2004). Sustainable engineering practice: an introduction.
4. Bird, R., Clarke, R., Donnelly, T., Heidrick, O., Huang, Y. (2004). Life cycle and sustainability indices for road paving materials. Technical report. School of civil engineering and geosciences, University of Newcastle upon Tyne.
5. Burritt, R. L., and Saka, C. (2006). “Environmental management accounting: applications and eco-efficiency. Case studies from Japan.” Journal of Cleaner production, 14, 1262-1275.
6. Dickie, I., and Howard, N. (2000). BRE Digest 446: assessing environmental impacts of construction industry consensus BREEAM and UK eco-points. Built research establishment.
7. Glunch, P., and Baumann, H., (2004). “The life cycle costing approach: a conceptual discussion of its usefulness for environmental decision-making”. Journal of Building and environment, 39, 571-580.
8. Holton, I., Glass, J., and Price, A. D. F. (2010). “Managing for sustainability: findings from four company case studies in the UK precast concrete industry.” Journal of Cleaner production, 18, 152-160.
9. Horvath, A., and Hendrickson, C. (1998). “Comparison of environmental implications of asphalt and steel-reinforced concrete pavements.” Transportation research record: Journal of the transportation research board, 1626, 105-113.
10. Horvath, A. (2003). Life-cycle environmental and economic assessment of using recycled materials for asphalt pavements. Technical report. University of California Transportation Center.
11. Huang, Y., Bird, R., and Heidrick, O. (2009). “Development of a life cycle assessment tool for construction and maintenance of asphalt pavements”. Journal of Cleaner production, 17, 283-296.
12. International Iron and Steel Institute (IISI) (2000). Annual report.
13. International Standard Organization (ISO 14040:2006). Environmental management. Life cycle assessment- Principles and framework.
14. International Standard Organization (ISO 14044:2006). Environmental management. Life cycle assessment- Requirements and guidelines
15. International Standard Organization (ISO 15686:2008). Buildings and constructed assets – Service life planning.
16. Jash, C. (2003) “The use of environmental management accounting for identifying environmental costs.” Journal of Cleaner production, 11, 667-676.
17. Jawad, D., and Ozbay, K. (2006). “The discount rate in life cycle cost analysis of transportation projects.” Transportation research board 85th annual meeting.
18. Keoleian, G., Kendall, A., Dettling, J., Smith, V., Chandler, Lepech, M., and Li, V. (2005). “Life cycle modeling of concrete bridge design: comparison of engineered cementitious composite link slabs and conventional steel expansion joints.” Journal of infrastructure system, 11(1), 51-60.
19. Keoleian, G. A., and Spitzley, D. V. (2006). “Life cycle based sustainability metrics.” In Sustainability science and engineering, v.1: defining principles, M. Abrabam, ed. Elsevier, chapter 2.3.
20. Kreich, A. J. (1992). Leachability of asphalt and concrete pavements. Heritage research group, Indianapdis, Indiana, The U.S.
21. Lennon, M. (2005). Recycling construction and demolition wastes: a guide for architects and contractors. The institution recycling network. www.mass.gov/dep/recycle/reduce/cdrguide.pdf
22. Li, P. (2011). Supply chain management. In Tech Publisher.
23. Minnesota Department of Transportation (MDOT) (2006). Bridge construction manual.
24. Muench, S. T., Anderson, J. L., and Weiland, C. (2010). Pavement life cycle assessment tool for environmental and economic effects. University of Washington.
25. Muench, S. T, Anderson, J. L., Hetfield, J. P., Koester, J. R., and Soderlund, M. et al. (2011). Greenroads Manual v1.5. Seattle, WA: University of Washington.
26. New York Department of Transportation (NYDOT) (1997). Fundamentals of bridge maintenance and inspection.
27. Ogwu, O. O, Kumaraswamy, M. M, Wong, A., Ng, S. T. (2005). “Sustainability appraisal in infrastructure projects (SUSAIP). Part 1: development of indicators and computational methods”. Journal of Automation in construction, 15, 239-251.
28. Ozbay, K., Parker, N., Jawad, D. and Hussain, S. (2003). Guidelines for life cycle cost analysis. New Jersey department of transportation, Trenton.
29. Ozbay, K., Jawad, D., Parker, N. A., and Hussain, S. (2004). “Life cycle cost analysis: state of the practice versus state of the art.” Transportation research record: Journal of Transportation research board, 1864, 62-70.
30. Park, K., Hwang, Y., Seo, Y., S., and Seo, H. (2003). “Quantitation assessment of environmental impacts on life cycle of highways.” Journal of construction engineering and management, 129(1), 25-31.
31. Portland cement association (PCA) (2006). Life cycle inventory of Portland cement manufacture. Research & development information, serial No. SN2095b.02.
32. Rangaraju, P. R., Amirkhanian, S., and Guven, Z. (2008). Life cycle cost analysis for pavement type selection. Final report, South Carolina Department of Transportation.
33. Rajendran, S. and Gambatese, J. A. (2007). “Solid waste generation in asphalt and reinforced concrete roadway life cycle.” Journal of infrastructure system, 13(2), 88-96.
34. Santero, N. J., Masanet, E., and Horvath, A. (2003). “Life cycle assessment of pavements. Part I: critical review.” Journal of resources, conservation and recycling, 55, 801-809.
35. Sherwood, P. (2011). Alternative materials in road construction. Thomas Telford Publishing.
36. Stripple, H. (2001). Life cycle assessment of road. A pilot study for inventory analysis. IVL Swedish environmental research institute.
37. Tatari, O., and Kucukvar, M. (2012). “Eco-efficiency of construction materials: a data envelopment analysis.” Journal of construction engineering and management, 138(6), 733-742.
38. United Kingdom Department of Trade and Industry (UKDTI) (2006). Digest of United Kingdom energy statistics. Technical report.
39. United Nations (UN) (1992). Agenda 21. United Nations conference on environment and development in Rio de Janeiro, Brazil.
40. United Nations economic and social commission for Asia and the Pacific (UNESCAP) (2009). Eco-efficiency indicators: measuring resource-use efficiency and the impact of economic activities on the environment.
41. United Nations industrial development organization (UNIDO) (2003). Annual report.
42. United Nations, New York (1997). Glossary of environment statistics, studies in methods, series F, No. 67.
43. United States Transportation research board (1990). Guide to earthwork construction.
44. United States environmental protection agency (USEPA) (1999). National pollutant discharge elimination system: regulations for revision of the water pollution control program addressing storm water discharges.
45. United States environmental protection agency (USEPA) (2008). Storm water pollution prevention for construction activities.
46. United States environmental protection agency (USEPA) (2009b). Municipal solid waste generation, recycling and disposal in the U.S: detailed tables and figures for 2008.
47. United States environmental protection agency (USEPA) (2009c). Municipal solid waste generation, recycling and disposal in the U.S: Facts and figures for 2008.
48. United States energy information agency (USEIA) (2002). International energy outlook 2003.
49. United States federal highway administration (USFHWA) (1996). Final Life cycle cost analysis policy statement.
50. University of California pavement research center (UCPRC) (2010). Pavement life cycle assessment workshop.
51. VTT technical research center of Finland (1996). Environmental adaption of concrete environmental impacts of concrete and asphalt pavements. Research note 1752.
52. Walls, J., and, Smith, M. R. (1998). Life cycle cost analysis in pavement design. Federal highway administration, Washington, D.C.
53. Wilburn, D. R., and Gooman, T. G. (1998). Aggregates from natural and recycled sources: US Geological survey circular 1176.
54. World business council for sustainable development (WBCSD) (2000). Measuring eco-efficiency: a guide to reporting company performance.
55. Zapata, P., and Gambatese, J. A. (2005). “Energy consumption of asphalt and reinforced concrete pavement materials and construction.” Journal of infrastructure systems, 11(1), 9-20.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-06-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-06-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw