進階搜尋


下載電子全文  
系統識別號 U0026-2506201109421100
論文名稱(中文) 於含有超臨界二氧化碳流體之電解液中以電鍍法製備鎳基鍍層及材料特性之研究
論文名稱(英文) Preparation and Material Characteristics of Ni-based Films Electrodeposited in Aqueous Electrolyte Containing Supercritical CO2 Fluid
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 鍾松廷
研究生(英文) Sung-Ting Chung
電子信箱 stchung@mail.mse.ncku.edu.tw
學號 n5895118
學位類別 博士
語文別 中文
論文頁數 222頁
口試委員 指導教授-蔡文達
口試委員-林招松
口試委員-李丕耀
口試委員-杜正恭
口試委員-楊聰仁
口試委員-程一麟
口試委員-林光隆
中文關鍵字 超臨界二氧化碳  電鍍  鎳鍍層  界面活性劑  硬度 
英文關鍵字 supercritical carbon dioxide  electroplating  Ni deposits  surfactant  hardness 
學科別分類
中文摘要 本研究中藉由電化學沉積法成功的於超臨界二氧化碳鍍浴中製備出具有優異性質的鎳鍍層。鍍液的組成、界面活性劑的添加、壓力的作用、氧化鋁微粒的共沉析和後熱處理對鎳鍍層之性質的影響,在本文中皆加以探討。在各種不同條件下所製備之鍍層,利用掃描式電子顯微鏡(SEM)觀察鍍層的表面形貌及橫截面的微觀組織,以原子力顯微鏡(AFM)掃描並量測鎳鍍層的表面粗糙度。鍍層之化學組成則藉由能量散佈分析儀(EDS)及X光光電子分析儀(XPS)來量測,其晶體結構則以X光繞射儀(XRD)進行分析,以穿透式電子顯微鏡(TEM)來分析鍍層之微觀結構。至於鍍層之硬度則使用微小硬度測試機及奈米壓痕試驗機來量測。在電化學測試方面,則選擇在1 M鹽酸水溶液中進行開路電位及動電位極化曲線的量測。
實驗結果顯示,無論界面活性劑的添加與否,在含有超臨界二氧化碳流體的電解液中所製備之鎳鍍層之電流效率明顯的較常壓鍍層來的低,是由於電鍍過程中,氫離子還原產生氫氣消耗部分電流所導致。在沒有添加界面活性劑的超臨界二氧化碳鍍浴中所沉積出的鎳鍍層中可發現針孔的存在;但於乳化的超臨界二氧化碳鍍浴的沉積反應,鍍層上的針孔均可被消除。因此,後者具有較前者來的低的表面粗糙度。當使用超臨界二氧化碳鍍浴時,可使製備出的鎳鍍層之晶粒尺寸變得更為細小。XPS分析結果顯示於超臨界二氧化碳鍍浴中電鍍時,鎳鍍層會發生碳化的現象。受到晶粒尺寸縮小以及碳固溶於鎳鍍層中的影響,使得鎳鍍層之硬度值明顯的增加。隨著施加壓力的增加,固溶於鎳鍍層中的碳含量將隨之增加。於存在15 MPa之超臨界二氧化碳流體之鍍浴中所製備出的鎳鍍層具有最高的硬度值(大約為720 Hv)。在1 M鹽酸水溶液中,於超臨界二氧化碳之鍍浴中所製備之鎳鍍層具有較低之陽極電流密度以及較高的極化阻抗。
在複合電鍍製程中,於沒有添加界面活性劑的超臨界二氧化碳鍍浴中可製得具有較高氧化鋁含量之鎳-氧化鋁複合鍍層,並且可觀察到氧化鋁微粒均勻分佈在鍍層上。藉由嵌入於鎳鍍層中的氧化鋁微粒所提供的分散強化,使得氧化鋁微粒的共沉積能進一步提升鎳鍍層的硬度值。隨著氧化鋁濃度從5 g/L增加至20 g/L時,於超臨界二氧化碳電鍍浴中所製備之鎳-氧化鋁複合鍍層的硬度值則由750 Hv提升到840 Hv。在1 M鹽酸水溶液中,於含有超臨界二氧化碳流體之傳統鍍浴中所製備之鎳-氧化鋁複合鍍層具有較傳統(常壓)鍍浴中所製備之鍍層來的低的陽極電流密度。研究中亦可觀察到,氧化鋁微粒嵌入於鎳基地相中,對鎳鍍層之電化學行為並沒有造成顯著的影響。
在鎳-磷合金電鍍系統中,係在含亞磷酸之鍍液中製備,與傳統(常壓)電解液中所製備的鍍層比較,於超臨界二氧化碳鍍浴中所製備之鎳-磷合金鍍層之重量增加量以及其磷含量皆明顯的下降。而造成鎳-磷合金鍍層中磷含量降低的原因與碳的共沉積有關。於超臨界二氧化碳電鍍浴中可製備出較傳統(常壓)具有較高硬度值的鎳-磷合金鍍層。碳固溶於鎳-磷合金鍍層中則有益於提升其硬度值。於10 MPa之超臨界二氧化碳鍍浴中所製備之鎳-磷合金鍍層可獲得一最高的硬度值(1275 Hv)。
於乳化之超臨界二氧化碳鍍浴中所製備出的鎳-磷-碳合金鍍層之相轉變溫度為406.7 oC,明顯的較常壓之鎳-磷合金鍍層(428.8 oC)來的低,係受到較細小之晶粒尺寸及較高的表面能所致。受到結晶優選方位、晶粒細化、Ni3P相的析出以及磷與碳的合金化的影響,而造成鎳-磷合金鍍層硬度值上升的因素。經過適當的熱處理過後,於超臨界二氧化碳電鍍浴中所製備之鎳-磷-碳合金鍍層具有一相當高的硬度值。與常壓製備者比較,前者硬度提升之幅度高於後者,最高硬度值可達16.1 GPa (1625 Hv)。
英文摘要 The Ni-based deposits with promising property were successfully prepared by electrodeposition in supercritical CO2 (sc-CO2) bath. In this study, the effects of bath composition, the surfactant addition, the applied pressure, the co-deposited Al2O3 particles and heat-treatment on the properties of the Ni deposits were also discussed. A scanning electron microscope (SEM) was used to examine the surface morphologies and cross-section microstructure of the deposits fabricated in various conditions, and the surface roughness of the electrodeposited nickel films was scanned and measured by an atomic force microscopy (AFM). The chemical composition of the deposits was analyzed using energy dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The crystal structure of the deposit was characterized by performing X-ray diffraction (XRD). Transmission electron microscopy (TEM) was analyzed for microstructure of the deposits. The hardness measurements were carried out using a micro-hardness tester and a nano-indenter. Electrochemical tests, including open circuit potential and potentiodynamic polarization curves determination, were performed in 1 M HCl solution.
The experimental results showed that the current efficiencies of Ni deposits were performed in aqueous electrolyte containing sc-CO2 fluid, either with or without surfactant addition, were lower than that deposited at ambient pressure due to the increase participation of proton reduction. Pin-holes were found in the Ni film electrodeposited in the surfactant-free sc-CO2 bath, but these were eliminated when the deposition took place in an emulsified sc-CO2 bath. Consequently, the surface roughness of the Ni film performed in emulsified sc-CO2 bath was much lower than that deposited at ambient pressure. The grain size of the Ni deposit became much finer when the sc-CO2 bath was used. The XPS results indicated that carburization of Ni did occur, when electrodeposited form sc-CO2 bath. The fine grain size and the solid solution of C in Ni deposit gave rise to a substantial increase in the micro-hardness of the electrodeposited Ni film. With increasing in the applied pressure, the carbon content in the Ni film increased. The highest hardness (about 720 Hv) could be obtained for the Ni film electrodeposited from a bath of 15 MPa sc-CO2 fluid. In 1 M HCl solution, the Ni film deposited in sc-CO2 bath had a lower anodic current density and a higher polarization resistance.
In the composite electroplating process, the Ni-Al2O3 composite coating deposited in surfactant-free sc-CO2 bath has a high Al2O3 content and a uniform distribution of Al2O3 particles in the deposit could be obtained. The co-deposited Al2O3 particles was further increased the hardness of Ni film, indicating dispersion strengthening from the embedded Al2O3 particles in Ni matrix. With increasing the concentration of Al2O3 from 5 to 20 g/L, the micro-hardness of the Ni-Al2O3 composite coatings deposited in sc-CO2 bath increased from 750 to 840 Hv. In 1 M HCl solution, the Ni-Al2O3 composite coating electrodeposited in a conventional bath containing sc-CO2 fluid had a lower anodic current density as compared with that formed in the conventional electrolyte at ambient pressure. In this study, the insignificant effect of embedded Al2O3 particles in the Ni matrix on the electrochemical behavior of Ni deposit could be obtained.
In the Ni-P alloy electroplating process, the significant decreases in weight gain and P content of the Ni-P films deposited in the sc-CO2 bath containing H3PO3 were found, as compared with that plated in the conventional electrolyte at ambient pressure. The significant decrease in phosphorus content of the Ni-P coatings was observed due to the co-deposition of carbon. The Ni-P coatings electrodeposited from the sc-CO2 bath had a higher hardness as compared with that produced in plain aqueous electrolyte at ambient pressure. The solid solution of carbon into Ni-P film was beneficial in increasing the hardness. A maximum hardness (about 1275 Hv) was observed for the Ni-P coatings deposited in sc-CO2 bath at 10 MPa.
The phase transformation temperatures of Ni-P-C alloy coating deposited in the emulsified sc-CO2 bath was 407 oC, which was lower than that plated in conventional electrolyte (429 oC) due to the fine grain size and higher surface energy, with the same P content. The change in crystallographical orientation, grain size refinement, the precipitation of Ni3P phase and the alloy of P and C are responsible for the substantial increase in hardness of the Ni-P electrodeposits. After suitable heat-treatment, the electrodeposited Ni-P-C alloy coating deposited in sc-CO2 bath exhibited relatively high hardness. The hardness of the former film (about 16.1 GPa, 1625 Hv) was higher than that of the latter, as compared with that plated at ambient pressure.

論文目次 中文摘要 I
英文摘要 IV
誌謝 VII
總目錄 IX
表目錄 XVI
圖目錄 XIX
第一章 前言 1
第二章 背景資料與文獻回顧 6
2-1 表面處理技術 6
2-2 電鍍技術 7
2-2-1 電鍍鎳原理 8
2-2-2 複合電鍍之簡介 13
2-2-3 複合電鍍共沉積機制及原理 16
2-2-4 鎳-磷合金鍍層之簡介 17
2-2-5 合金電鍍之共沉積機制及原理 19
2-2-6 鎳-磷合金之熱處理 20
2-3材料之強化機構 22
2-3-1 細晶強化 (Fine Grain Size Strengthening) 23
2-3-2 Inverse Hall-Petch relationship 23
2-3-3 固溶強化 (Solution Hardening) 24
2-3-4 析出強化 (Precipitation Strengthening) 25
2-3-5 加工硬化(Work Hardening) 26
2-4超臨界流體簡介 26
2-4-1超臨界二氧化碳流體之性質及運用 27
2-4-2 乳化機制 28
2-4-3 界面活性劑扮演之角色 29
2-5 超臨界二氧化碳流體之電鍍技術 31
第三章 實驗方法與步驟 47
3-1 超臨界二氧化碳電鍍試驗系統 47
3-2 鍍液的組成 48
3-2-1 純鎳鍍層的製備 48
3-2-2 鎳-氧化鋁複合鍍層的製備 49
3-2-3 鎳-磷合金鍍層的製備 49
3-3 電極製備 50
3-4 鎳磷合金鍍層之熱處理 51
3-5 鎳鍍層之沉積效率量測 51
3-6 鎳鍍層之材料特性分析 52
3-6-1 微觀組織鑑定 52
3-6-2 結晶結構分析 52
3-6-3 表面形貌觀察 52
3-6-4 化學組成與化學組態量測 53
3-6-5 熱性質研究 54
3-6-6 機械性質 54
3-6-7 電化學試驗 54
第四章 結果與討論 61
4-1 建立及評估超臨界二氧化碳之電鍍技術 61
4-1-1 鎳鍍層的表面形貌分析 61
4-1-2 鎳鍍層之橫截面觀察 61
4-1-3 鎳鍍層之結晶結構分析 62
4-1-4 鎳鍍層之維氏硬度分析 63
4-1-5 鎳鍍層之電化學行為分析 64
4-1-6結語 66
4-2 於乳化之超臨界二氧化碳鍍浴中製備鎳鍍層 78
4-2-1不同製程條件對鎳鍍層材料性質之影響 78
4-2-1-1 鎳鍍層之電流效率分析 78
4-2-1-2 鎳鍍層之表面形貌分析 79
4-2-1-3 鎳鍍層之結晶結構分析 81
4-2-1-4 鎳鍍層之化學組成分析 82
4-2-1-5 鎳鍍層之橫截面觀察 84
4-2-1-6 鎳鍍層之微觀組織分析 84
4-2-1-7 鎳鍍層之維氏硬度分析 85
4-2-2 改變二氧化碳的操作壓力對鎳鍍層材料性質之影響 87
4-2-2-1 鎳鍍層之電流效率分析 87
4-2-2-2 鎳鍍層之化學組成分析 87
4-2-2-3 鎳鍍層之晶體結構分析 88
4-2-2-4 鎳鍍層之微觀組織分析 89
4-2-2-5 鎳鍍層之維氏硬度分析 89
4-2-2-6 鎳鍍層之電化學行為分析 90
4-2-3 結語 91
4-3 於乳化之超臨界二氧化碳鍍浴中製備鎳-氧化鋁複合鍍層 114
4-3-1 不同製程條件對鎳-氧化鋁複合鍍層材料性質之影響 114
4-3-1-1 鎳-氧化鋁複合鍍層之成分分析 114
4-3-1-2 鎳-氧化鋁複合鍍層之表面形貌分析 114
4-3-1-3 鎳-氧化鋁複合鍍層之橫截面觀察 117
4-3-1-4 鎳-氧化鋁複合鍍層之結晶結構分析 118
4-3-1-5 鎳-氧化鋁複合鍍層之維氏硬度分析 119
4-3-1-6 鎳-氧化鋁複合鍍層之電化學行為分析 120
4-3-2 改變鍍浴中氧化鋁的濃度對鎳-氧化鋁複合鍍層材料性質之影響 122
4-3-2-1 鎳-氧化鋁複合鍍層之成分分析 122
4-3-2-2 鎳-氧化鋁複合鍍層之維氏硬度分析 122
4-3-3 結語 123
4-4 於乳化之超臨界二氧化碳鍍浴中製備鎳-磷合金鍍層 134
4-4-1 不同製程條件對鎳-磷合金鍍層材料性質之影響 134
4-4-1-1 鎳-磷合金鍍層之重量增加量 134
4-4-1-2 鎳-磷合金鍍層之化學組成分析 135
4-4-1-3鎳-磷合金鍍層之橫截面觀察 137
4-4-1-4 鎳-磷合金鍍層之晶體結構分析 137
4-4-1-5 鎳-磷合金鍍層之微觀組織分析 139
4-4-1-6 鎳-磷合金鍍層之硬度分析 139
4-4-1-7 鎳-磷合金鍍層之電化學行為分析 140
4-4-2 改變鍍浴中亞磷酸的濃度對鎳-磷合金鍍層材料性質之影響 141
4-4-2-1 鎳-磷合金鍍層之重量增加量 141
4-4-2-2 鎳-磷合金鍍層之化學組成分析 142
4-4-2-3 鎳-磷合金鍍層之晶體結構分析 143
4-4-2-4 鎳-磷合金鍍層之微觀組織分析 144
4-4-2-5 鎳-磷合金鍍層之硬度分析 145
4-4-2-6 鎳-磷合金鍍層之電化學行為分析 148
4-4-3 改變二氧化碳的操作壓力對鎳-磷合金鍍層材料性質之影響 150
4-4-3-1 鎳-磷合金鍍層之重量增加量 150
4-4-3-2 鎳-磷合金鍍層之化學組成分析 151
4-4-3-3 鎳-磷合金鍍層之橫截面觀察 151
4-4-3-4 鎳-磷合金鍍層之晶體結構分析 153
4-4-3-5 鎳-磷合金鍍層之微觀組織分析 154
4-4-3-6 鎳-磷合金鍍層之硬度值分析 154
4-4-3-7 鎳-磷合金鍍層之電化學行為分析 155
4-4-4 熱處理對鎳-磷合金鍍層材料性質之影響 156
4-4-4-1 初鍍鎳-磷合金鍍層之化學組成及微觀組織分析 156
4-4-4-2 鎳-磷合金鍍層之熱差分析 156
4-4-4-3 鎳-磷合金鍍層之晶體結構分析 158
4-4-4-4 經熱處理之鎳-磷合金鍍層的微觀組織分析 160
4-4-4-5 初鍍及經熱處理後的鎳-磷合金鍍層之硬度分析 160
4-4-4-6 初鍍及經熱處理後的鎳-磷合金鍍層之電化學行為分析 164
4-4-5 結語 164
第五章 結論 206
第六章 未來研究方向 210
參考文獻 211
參考文獻 [1] H. Bhatt, “Plating and surface Finishing”, 93 (10) (2006) 20.
[2] J.J. Watkins, J.M. Blackburn, T.J. McCarthy, “Chemical Fluid deposition: reactive deposition of platinum metal from carbon dioxide solution” Chemistry of. Materials, 11 (1999) 213.
[3] J.J. Watkins and T.J. McCarthy, “Polymer/metal nanocomposite synthesis in supercritical CO2” Chemistry of. Materials, 7 (1995) 1991.
[4] H. Yoshida, M. Sone, A. Mizushima, K. Abe, X. T. Tao, S. Ichihara, S. Miyata, “Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution”, Chemistry Letters, 11 (2002) 1086.
[5] H. Yoshida, M. Sone, A. Mizushima, H. Yan, H. Wakabayashi, K. Abe, X. T. Tao, S. Ichihara, S. Miyata, “Application of emulsion of dense carbon dioxide in electroplating solution with nonionic surfactants for nickel electroplating”, Surface and Coatings Technology, 173 (2003) 285.
[6] H. Yan, M. Sone, N. Sato, S. Ichihara, S. Miyata, “The effects of dense carbon dioxide on nickel plating using emulsion of carbon dioxide in electroplating solution”, Surface and Coatings Technology, 182 (2004) 329.
[7] H. Yan, M. Sone, A. Mizushima, T. Nagai, K. Abe, S. Ichihara, S. Miyata, “Electroplating in CO2-in-water and water-in-CO2 emulsions using a nickel electroplating solution with anionic fluorinated surfactant”, Surface and Coatings Technology, 187 (2004) 86.
[8] H. Yoshida, M. Sone, H. Wakabayashi, H. Yan, K. Abe, X. T. Tao, A. Mizushima, S. Ichihara, S. Miyata, “New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film”, Thin Solid Films, 446 (2004) 194.
[9] K. M. Hong, M. S. Kim, J. G. Chung, “Characteristics of a Nickel film electeoplated in a copper subsreate in supercritical CO2”, Journal of Industrial and Engineering Chemistry, 10 (2004) 683.
[10] A. Mizushima, M. Sone, H. Yan, T. Nagai, K. Shigehara, S. Ichihara, S. Miyata, “Nanograin deposition via an electroplating reaction in an emulsion of dense carbon dioxide in a nickel electroplating solution using nonionic fluorinated surfactant”, Surface and Coatings Technology, 194 (2005) 149.
[11] H. Wakabayashi, N. Sato, M. Sone, Y. Takada, H. Yan, K. Abe, K. Mizumoto, S. Ichihara, S. Miyata, “Nano-grain structure of nickel films prepared by emulsion plating using dense carbon dioxide”, Surface and Coatings Technology, 190 (2005) 200.
[12] M. S. Kim, C. K. Kim, “Nickel electroplating on copper substrate in plating solution containing high-density CO2”, Journal of Industrial and Engineering Chemistry, 11 (2005) 876.
[13] M. S. Kim, J. Y. Kim, C. K. Kim, N. K. Kim, “Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO2”, Chemosphere, 58 (2005) 459.
[14] Md. M. Rahman, M. Sone, M. Eguchi, K. Ikeda, S. Miyata, T. Yamamoto, “Wear properties of nickel coating film plated from emulsion with dense carbon dioxide”, Surface and Coatings Technology, 201 (2006) 606.
[15] Md. M. Rahman, M. Sone, H. Uchiyama, M. Sakurai, S. Miyata, T. Nagai, Y. Higo, H. Kameyama, “Novel porous film by electroplating with an emulsion of supercritical CO2”, Surface and Coatings Technology, 201 (2007) 7513.
[16] A. M. Batchelor and Loh Nee Lam, M. Chandrasekaran, “Materials Degradation and its Control by Surface Engineering”, Imperial College Press, 2nd Edition
[17] H. Honma, “Plating technology for electronics packaging”, Electrochimica Acta, 47 (2001) 75.
[18] J. W. Schultze, A. A. B., “Principles of electrochemical micro- and nano-system technologies”, Electrochimica Acta, 47 (2001) 3.
[19] F. Formanek, N.T., and T. Tanaka, “Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures”, Applied Physics Letters, 88 (2006) 083110.
[20] Bard, Allen J. “Electrochemical Methods”, John Wiley & Sons, Singapore, Chap.1~3 & Chap. 9 (1980)
[21] R. G. Ehl, A. J. Ihde, “Faraday's electrochemical laws and the determination of equivalent weights”, Journal of Chemical Education, 31 (5) (1954) 226.
[22] Pletcher. D, “Industrial Electrochemistry”, Chapman and Hall, London, (1982).
[23] A. Brenner, “Electrodeposition of Alloy”, Vol. 1-2, Academic Press, New York (1963).
[24] A. Brenner, D. E. Couch and E. K. Williams, “Plating”, 37 (1950).
[25] F. K. Sautter, “Electrodeposited of Dispersion-Hardened Nickel-Al2O3 Alloys”, Journal of the Electrochemical Society, 110, (1963) 557.
[26] J. Zahavi and J. Hazan, “Electrodeposited Nickel Composites Containing Diamond Particles”, Plating and Surface Finishing, Feb., (1983) 57.
[27] M. Ghouse, “Wear Characteristics of Sediment Co-deposited Nickel-SiC Composite Coating”, Metal Finishing, Mar., (1984) 33.
[28] M. Ghouse, M. Viswanathan and E. G. Ramachandran, “Friction and Wear Characteristics of Electrodeposited Nickel-Craphite and Nickel-MoS2 Composite”, Metal Finishing, Aug., (1980) 57.
[29] X. H. Chen, C. S. Chen, H. N. Xiao, F. Q. Cheng, G. Zheng, G. J. Yi, “Corrosion behavior of carbon nanotubes–Ni composite coating”, Surface and Coatings Technology, 191 (2005) 351.
[30] Liu, Y. C., Wang, J. W., Peng, Y. M., Chen, H. J., Shen, J. H., and Huang, C. A., “Ni-SiC Composite plating”, MRL Bulletin of Research and Development, 4 (1) (1990) 31.
[31] Ghouse, M., “Wear Characteristics of Sediment Co-deposited Nickel-SiC Composite Coatings,” Metal Finishing, 2 (3), (1984) 33.
[32] Zahavi, J., and Hazen, J., “Electrodeposited Nickel Composites Containing Diamond Particles,” Plating and Surface Finishing, 70 (2), (1983) 57.
[33] Maurin, G., and Lavanant, A., “Electrodeposition of Nickel/Silicon Carbide Composite Coatings on a Rotating Disc Electrode,” Journal of Applied Electrochemistry, 25 (12), (1995) 1113.
[34] Garcia, I., Fransaer, J., and Celis, J. P., “Electrodeposition and Sliding Wear Resistance of Nickel Composite Coatings Containing Micron and Submicron SiC Particles,” Surface and Coatings Technology, 148 (2-3), (2001) 171.
[35] Lidia Benea , Pier Luigi Bonora , Alberto Borello , Stefano Martelli, “Wear corrosion properties of nano-structured SiC–nickel composite coatings obtained by electroplating”, Wear, 249 (2001) 995.
[36] H. Schulze, “Schwefelarsen im wässeriger Losung”, Journal für Praktische Chemie, 25 (1882) 431.
[37] W. B. Hardy, “A Preliminary Investigation of the Conditions Which Determine the Stability of Irreversible Hydrosols”, Proceedings of the Royal Society, London, 66 (1900) 110.
[38] D. R. Brown and F. W. Salt, Journal of Applied Electrochemistry, Jan., (1965) 40.
[39] R. V. Williams, “Metal Finishing Journal”, Oct., (1965) 339.
[40] P. W. Matin, “Electroplating and Metal Finishing”, (1966) 92.
[41] J.P. Celis, J.R. Roos and C. Buelenss, “A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix”, Journal of the Electrochemical Society, 134 (1987) 1402.
[42] J. Fransaer, J. P. Celis and J.R. Roos, “Analysis of the Electrolytic Codeposition of Non-Brownian Particles with Metals”, Journal of the Electrochemical Society,139 (1992) 413.
[43] J. P. Celis, J.R. Roos, C. Buelens and J. Fransaer, “Mechanism of electrolytic composite plating: survey and trends”, Transactions of the Institute of Metal Finishing, 69 (4) (1991) 133.
[44] X. Yuan, D. Sun, H. Yu, H. Meng, Z. Fan, X. Wang, “Preparation of amorphous-nanocrystalline composite structured Ni-P electrodeposits” Surface and Coatings Technology, 202 (2007) 294.
[45] D.-T. Kim, M. J. Kim, J. S. Kim, H. P. Kim, “Material characteristics of Ni-P-B electrodeposits obtained from a sulfamate solution”, Surface and Coatings Technology, 202 (2008) 2519.
[46] B. P. Daly, and F. J. Barry, “Electrochemical Nickel-Phosphorus Alloy Formation”, International Materials Reviews, 48 (2003) 326.
[47] D. S. Lashmore and J. F. Weinroth, “Pulsed Electrodeposition of Nickel-Phosphorus Metallic Glass Alloys”, Plating and Surface Finishing 69 (1982) 72.
[48] I. Paseka, “Evolution of Hydrogen and its Sorption on Remarkable Activity Amorphous Smooth Ni-P(x) Electrode”, Electrochimica Acta, 40 (11) (1995) 1633.
[49] Brenner, Electrodeposition of Alloys, Vol. 2, Academic, New York, (1963).
[50] L. Chang, P.W. Kao, C.H. Chen, “Strengthening mechanisms in electrodeposited Ni–P alloys with nanocrystalline grains”, Scripta Materialia, 56 (2007) 713.
[51] T. M. Harris, Q. D. Dang, “The Mechanism of Phosphorus Incorporation during the Electrodeposition of Nickel-Phosphorus Alloys”, Journal of the Electrochemical Society, 140 (1993) 81.
[52] E. Tóth-Kádár, I. Bakonyi, A. Sólyom, J. Hering, G. Konczos, F. Pavlyák, “Preparation and characterization of electrodeposited amorphous Ni-P alloys”, Surface and Coatings Technology, 31 (1987) 31.
[53] R. L. Zeller III and U. Landau, “The Effect of Hydrogen on the Ductility of Electrodeposited Ni-P Amorphous Alloys”, Journal of the Electrochemical Society, 137 (1990) 1107.
[54] J. W. Dini, H. R. Johnson, and H. J. Saxton, “Influence of S on the properties of electrodeposited Ni”, The Journal of Vacuum Science and Technology, 12 (1975) 766.
[55] D. H. Jeong, U. Erb, K. T. Aust, and G. Palumbo, “The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni–P coatings”, Scripta Materialia, 48 (2003) 1067.
[56] C. S. Lin, C. Y. Lee, F. J. Chen, and W. C. Li, “Structural Evolution and Internal Stress of Nickel-Phosphorus Electrodeposits”, Journal of the Electrochemical Society, 152 (2005) C370.
[57] M. H. Seo, J. S. Kim, W. S. Hwang, D.J. Kim, S.S. Hwang, B.S. Chun, “Characteristics of Ni–P alloy electrodeposited from a sulfamate bath”, Surface and Coatings Technology, 176 (2004) 135.
[58] C. S. Lin, P. C. Hsu, K.C. Peng, L. Chang and C. H. Chen, ”Annealing Behavior of Nickel Electrodeposited from Sulfamate Bath at Different Temperatures”, Materials Transactions, JIM, 42(2) (2001) 316.
[59] E. Vafaei-Makhsoos, E. L. Thomas and L. E. Toth, ”Electron Microscopy of Crysttalline and Amorphous Ni-P Electrodepsotied Films: In-Suit Crystallization of an Amorphous Solid”, Metallurgical Transactions A, 9A (1998) 1449.
[60] E. Vafaei-Makhsoos, “Dependence of Dendritic Morphology on Crystal Structure in Partially Crystallized Amorphous Ni-P Thin Films”, Journal of Materials Science, 16 (1981) 2103.
[61] M. H. Seo, J. S. Kim, W. S. Hwang, D. J. Kim, S. S. Hwang and B. S. Chun, “Characteristics of Ni-P Alloy Electrodeposited from A Sulfamate Bath”, Surface and Coatings Technology, 176 (2004) 135.
[62] G. D. Hibbard, G. Palumbo, K. T. Aust and U. Erb, “Nanoscale Combined Reactions: Non-equilibrium ε-Co by abnormal Grain Growth”, Philosophical Magazine, 86 (2) (2006) 125.
[63] E. O. Hall, “The Deformation and Ageing of Mild Steel: II Discussion of Results”, Proc. Phys. Soc., B. 64 (1951) 747.
[64] N. J. Petch, “The cleavage strength of polycrystals”, J. Iron Steel Inst. 174 (1953) 25.
[65] N. Wang, Z. R. Wang, K. T. Aust, U. Erb, “Effect of grain size on mechanical properties of nanocrystalline materials”, Acta Metallurgica et Materialia 43 (1995) 519.
[66] H. Hahn, P. Mondal, K. A. Padmanabhan, “Plastic deformation of nanocrystalline materials”, Nanostructured Materials, 9 (1997) 603.
[67] H. Gleiter, “Nanocrystalline materials”, Progress in Materials Science, 33 (1989) 223.
[68] A. W. Thoompso, Acta Metall., 23 (1975) 1335.
[69] T. G. Niel, J. Wadsworth, “Hall-petch relation in nanocrystalline solids”, Scripta Metallurgica et Materialia. 25 (1991) 955.
[70] J. Lian, B. Baudelet and A.A. Nazarov, “Model for the prediction of the mechanical behaviour of nanocrystalline materials”, Materials Science and Engineering, A172 (1993) 23.
[71] J. E. Carsley, J. Ning, W. W. Milligan, S. A. Hackney, E. C. Airfantis, “A simple, mixtures-based model for the grain size dependence of strength in nanophase metals”, Nanostructured Materials, 5 (1995) 441.
[72] G. Palumbo, S. J. Thorpe, K. T. Aust, “On the contribution of triple junctions to the structure and properties of nanocrystalline materials”, Scripta Metall. Mater. 24 (1990) 1347.
[73] W. Hume-Rothery, “Atomic Theory for Students of Metallurgy”, London, The Insitute of Metals, (1969) fifth reprint.
[74] Thomas H. Courtney, “Mechanical Behavior of Materials”, New York, McGraw-Hill, (1990) second edition
[75] T. Clifforo, “FUNDAMENTALS OF SUPERCRITICAL FLUIDS”, United Kingdom: Oxford University Press, (1999).
[76] R. C. Reid, J.M.P., B. E.Poling, “The Properties of Gases and Liquids”, New York: McGraw-Hill, 1986.
[77] J. R. Williams, A.A.C., S. H. R. Al-Saidi, “Supercritical Fluids and Their Applications in Biotechnology and Related Areas”, Molecular Biotechnology, 22 (2002) 263.
[78] J. A. Darr, M.P., “New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercritical Fluids”, Chemical Reviews, 99 (1999) 495.
[79] L.S. Daintree, A.K., P. York, “Separation processes for organic molecules using SCF Technologies”, Advanced Drug Delivery Reviews, 60 (2008) 351.
[80] M. Lora, L.K., “Polymer processing with supercritical fluids: an overview”, Separation and purification methods, 28 (1999) 179.
[81] B.Subramaniam, R.A.R., and K. Snavely, “Pharmaceutical Processing with Supercritical Carbon Dioxide”, Journal of Pharmaceutical Sciences, 86 (1997) 885.
[82] G. L. Weibel, C.K.O., “An overview of supercritical CO2 applications in microelectronics processing”, Microelectronic Engineering, 65 (2003) 145.
[83] P. Raveendran, Y.I., S. Wallen, “Polar Attributes of Supercritical Carbon Dioxide”, Accounts of Chemical Research, 38 (2005) 478.
[84] K. E. O’Shea, K. M. Kirmse, M. A. Fox, K. P. Johnston, “Polar and hydrogen-bonding interactions I supercritical fluids: effects on the tautomeric equilibrium of 4-(phenylazo)-1-naphthol”, The Journal of Physical Chemistry, 95 (1991) 7863.
[85] S. Saito, “Research Activties on Supercritical Fluid Science and Technology in Japan – A Review”, Journal of Supercritical Fluids, 8 (1995) 177.
[86] W. Ryoo, S.E.W., K. P. Johnston, “Water-in-Carbon Dioxide Microemulsions with Methylated Branched Hydrocarbon Surfactants”, Industrial and Engineering Chemistry Research, 42 (2003) 6348.
[87] S. Kaneshina, O.S., M. Nakamura, “Effect of pressure on the clound point of nonionic surfactant solutions and the solubilization of hydrocarbons”, Bulletin of the Chemical Society of Japan, 52 (1979) 42.
[88] Einaga, Y., “Phase Diagram of Dilute Micelle Solutions of Polyoxyethylene Alkyl Ethers”, Polymer Journal, 39 (2007) 1082.
[89] H.S. Phiong, F.P. Lucien, A.A. Adesina, “Three-phase catalytic hydrogenation of α-methylstyrene in supercritical carbon dioxide”, Journal of Supercritical Fluids, 25 (2003) 155.
[90] L. Devetta, A. Giovanzana, P. Canu, A. Bertucco, B. J. Minder, “Kinetic experiments and modeling of a three-phase catalytic hydrogenation reaction in supercritical CO2”, Catalysis Today, 48 (1999) 337.
[91] A.M. El-Sherik, U. Erb, J. Page, “Microstructural evolution in pulse plated nickel electrodeposits”, Surface and Coatings Technology, 88 (1996) 70.
[92] F. Czerwinski, J. A. Szpunar, “Controlling the surface texture of nickel for hightemperature oxidation inhibition”, Corrosion Science, 41 (1999) 729.
[93] C. Bergenstof Nielsen, A. Horsewell, M. J. L. Ostergard, “On texture formation of nickel electrodeposits”, Journal of Applied Electrochemistry, 27 (1997) 839.
[94] Benedetto Bozzini, “Mass-transport effects on texture formation of nickel electrodeposits”, Materials Chemistry and Physics, 66 (2000) 278.
[95] A. K. N. Reddy, “Preferred orientations in nickel electro-deposits I. The mechanism of development of textures in nickel electro-deposits”, ibid., 6 (1963) 141.
[96] C. Wagner, W. Traud, “On the interpretation of corrosion processes through the superposition of electrochemical partial processes and on the potential of mixed electrodes”, Electrochem. 44 (1938) 391.
[97] K. L. Toews, R. M. Shroll, C. M. Wai, and N. G. Smart, pH-Defining Equilibrium between Water and Supercritical CO2. Influence on SFE of Organics and Metal Chelates, Analytical Chemistry, 67 (1995) 4040.
[98] E. D. Niemeyer and F. V. Bright, The pH within PFPE Reverse Micelles Formed in Supercritical CO2, The Journal of Physical Chemistry B, 102 (1998) 1474.
[99] J. Dille, J. Charlier, and R. Winand, The structure and mechanical properties of thick cobalt electrodeposits, Journal of Materials Science, 32 (1997) 2637.
[100] O. E. Kongstein, G. M. Haarberg, and J. Thonstad, Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density, pH and temperature, Journal of Applied Electrochemistry, 37 (2007) 669.
[101] L. Devetta, A. Giovanzana, P. Canu, A. Bertucco, and B. J. Minder, Kinetic experiments and modeling of a three-phase catalytic hydrogenation reaction in supercritical CO2, Catalysis Today, 48 (1999) 337.
[102] H. S. Phiong, F. P. Lucien, and A. A. Adesina, Three-phase catalytic hydrogenation of α-methylstyrene in supercritical carbon dioxide, The Journal of Supercritical Fluids, 25 (2003) 155.
[103] T. J. Moravec and T. W. Orent, “Electron spectroscopy of ion beam and hydrocarbon plasma generated diamondlike carbon films”, The Journal of Vacuum Science and Technology, 18 (1981) 226.
[104] A. Wiltner and Ch. Linsmeier, Formation of endothermic carbides on iron and nickel, Physica Status Solidi A, 201 (2004) 881.
[105] Gy. J. Kovács, I. Bertóti, and G. Radnóczi, X-ray photoelectron spectroscopic study of magnetron sputtered carbon–nickel composite films, Thin Solid Films, 516 (2008) 7942.
[106] N. Laidani, L. Calliari, G. Speranza, V. Micheli, and E. Galvanetto, Mechanical and structural properties of Ni-C films obtained by RF sputtering“, Surface and Coatings Technology, 100–101 (1998) 116.
[107] Gy. J. Kovács, G. Sáfrán, O. Geszti, T. Ujvári, I. Bertóti, and G. Radnóczi, Structure and mechanical properties of carbon–nickel and CNx–nickel nanocomposite films”, Surface and Coatings Technology, 180–181 (2004) 331.
[108] J. Nishijo, C. Okabe, O. Ishi, and N. Nishi, Synthesis, structures and magnetic properties of carbon-encapsulated nanoparticles via thermal decomposition of metal acetylide, Carbon, 44 (2006) 2943.
[109] S. R. P. da Rocha, P. A. Psathas, E. Klein, and K. P. Johnston, “Concentrated CO2-in-Water Emulsions with Nonionic Polymeric Surfactants”, Journal of Colloid and Interface Science, 239, (2001) 241.
[110] Y.S. Choi, S. Nesic, “Corrosion Behavior of Carbon Steel in Supercritical CO2 - Water Environments”, NACE International Corrosion 2009 Conference & Expo, Georgia, U.S.A., March 22–26, 2009, NACE international, (2009), p. 09256.
[111] R. Mishra, R. Balasubramaniam, “Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercapto group”, Corrosion Science, 46 (2004) 3019.
[112] S. Alirezaei , S.M. Monirvaghefi, M. Salehi, A. Saatchi, “Wear behavior of Ni–P and Ni–P–Al2O3 electroless coatings”, Wear, 262 (2007) 978.
[113] B. Muller, H. Ferkel, “Al2O3-nanoparticle distribution in plated nickel composite films”, Nanostructured Materials, 10 (1998) 1285.
[114] W. Gang, L. Ning, Z. Derui, M. Kurachi, “Electrodeposited Co–Ni–Al2O3 composite coatings”, Surface and Coatings Technology, 176 (2004) 157.
[115] P. S. Kumar and P. K. Nair, “Studies on crystallization of electroless Ni-P deposits”, Journal of Materials. Processing Technology, 56 (1996) 511.
[116] G. Lu and G. Zangari, “Corrosion resistance of ternary Ni---P based alloys in sulfuric acid solutions”, Electrochimica Acta, 47 (2002) 2969.
[117] T. Morikawa, T. Nakade, m. Yokoi, Y. Fukumoto and C. Iwakura, “Electrodeposition of Ni-P alloys from Ni-citrate bath”, Electrochimica Acta, 42(1) (1997) 115.
[118] G. Li, Y. P. Gao, R. P. Liu, “Binary Ni-P bulk amorphous glass prepared by electrodeposition method”, Journal of Non-Crystalline Solids, 353 (2007) 4199.
[119] J. W. Yeh, S. Y. Chang, Y. D. Hong, S. K. Chen, and S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements”, Materials Chemistry and Physics, 103 (2007) 41.
[120] R. B. Diegle, N. R. Sorensen, C. R. Clayton, M. A. Helfand, and Y. C. Yu, “An XPS investigation into the passivity of an amorphous Ni-20P alloy”, Journal of the Electrochemical Society, 135(5) (1988) 1085.
[121] T.S.N. Sankara Narayanan, I. Baskaran, K. Krisnaveni, S. Parthiban, “Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance”, Surface and Coatings Technology, 200 (2006) 3438.
[122] K.G. Keong, W. Sha, S. Malinov, “Crystallization and phase transformation behaviour of electroless nickel-phosphorus deposits with low and medium phosphorus contents under continuous heating”, Journal of Materials Science, 37 (2002) 4445.
[123] K.G. Keong, W. Sha, S. Malinov, “Crystallisation kinetics and phase transformation behaviour of electroless nickel–phosphorus deposits with high phosphorus content”, Journal of Alloys and Compounds, 334 (2002) 192.
[124] M. da Silva, C. Wille, U. Klement, P. Choi, T. Al-Kassab, “Electrodeposited nanocrystalline Co–P alloys: Microstructural characterization and thermal stability”, Materials Science and Engineering: A 445-446 (2007) 31.
[125] L. Chang, P. W. Kao, C. H. Chen, “Strengthening mechanisms in electrodeposited Ni–P alloys with nanocrystalline grains”, Scripta Materialia, 56 (2007) 713.
[126] W. Y. Chen, S. K. Tien, F. B. Wu, J. G. Duh, “Crystallization behaviors and microhardness of sputtered Ni–P, Ni–P–Cr and Ni–P–W deposits on tool steel”, Surface and Coatings Technology, 182 (2004) 85.
[127] Y. Y. Tsai, F. B. Wu, Y. I. Chen, P. J. Peng, J. G. Duh, S. Y. Tsai, “Thermal stability and mechanical properties of Ni–W–P electroless deposits”, Surface and Coatings Technology, 146-147 (2001) 502.
[128] Y. J. Hu, T. X. Wang, J. L. Meng, Q. Y. Rao, “Structure and phase transformation behaviour of electroless Ni–W–P on aluminium alloy”, Surface and Coatings Technology, 201 (2006) 988.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-07-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-07-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw