系統識別號 U0026-2505201612334200
論文名稱(中文) 利用奈米壓印微影術在可撓式基板上製作高分子與金屬奈米結構應用於超疏水表面與折射率之感測
論文名稱(英文) Fabrication of Polymeric and Plasmonic Patterns on Flexible Substrate Based on Nanoimprint Lithography and Its Application to Superhydrophobic Surface and Refractive-Index Sensor
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 104
學期 2
出版年 105
研究生(中文) 梁家慶
研究生(英文) Chia-Ching Liang
學號 L78001208
學位類別 博士
語文別 英文
論文頁數 220頁
口試委員 口試委員-陳學禮
中文關鍵字 奈米壓印微影術  軟式模具  可撓式基板  表面電漿共振  折射率感測  超疏水表面 
英文關鍵字 Nanoimprint lithography  Soft mold  Flexible substrate  Surface plasmon resonance  Refractive index sensing  Superhydrophobic surface 
中文摘要 近年來,因受到市場的需求,在光電、有機電子、生物科技領域發展出許多非傳統的應用,特別是應用在可撓式元件上得到很多科學家的關注,其包含了發光二極體、太陽能電池、能量儲存器、液晶顯示器、人工瞳孔、生醫感測器、奈米紙傳感器…等。在結構製作上,利用傳統光學微影和電子束微影製程在不易直接在可撓式非平坦表面之基板上製作出結構,因此使用奈米壓印之技術是一個較合適的方式。然而大部分的高分子基板,容易與光阻溶劑不相容且有較差的熱穩定性,因此不適合使用傳統複雜的積體電路製程來製作。基於此因素,可撓式元件在製作過程中因盡量避免多步驟的製程、蝕刻步驟和接觸到有機溶劑的機會,因此利用奈米壓印微影術會是一個較合適的製作方式,近年來也發產出許多利用奈米壓印製作出可撓式元件之新穎製程。在本篇論文,我們提出三種與奈米壓印相關簡單的製程,其皆可直接在可撓式基板上製作出高分子或金屬週期性結構。
英文摘要 In recent years, an increasing number of nontraditional applications have been developed in the areas of photonics applications, organic electronics, and biotechnology. In particular, flexible device applications, which include electronic devices, light-emitting devices, solar cells, energy storage devices, optical devices, flexible displays, artificial iris, surface-enhanced Raman scattering, nanopaper transducers, biomedical devices, bioinspired materials, and sensors, have gained considerable interest from various fields. Compared with conventional lithography, such as photolithography and e-beam lithography, nanoimprint lithography (NIL) is a suitable method to imprint the resist directly on flexible substrates because it can mold the resist on a nonflat surface. However, flexible substrates cannot be integrated easily into conventional integrated circuit fabrication processes because of the incompatibility of photoresists, low thermal stability, and complex fabrication procedures. Multiple processes should be eliminated, and dry etching or solvent treatment should be avoided. Several researchers have introduced many approaches based on NIL. In this thesis, we demonstrate three straightforward and convenient processes, which can fabricate polymeric patterns or metallic nanostructure on a flexible substrate.
In the first section, we show a reliable process for the direct nanoimprinting of a flexible polycarbonate (PC) sheet using a perfluoropolyether (PFPE) mold. The imprint performance of PFPE, hard/soft- PDMS and silicon molds are compared. Only PFPE mold can be fully patterned into PC substrate with viable integrity at a low heating temperature and applying pressure. The mechanical property and gas permeability of the materials are investigated. Finally, nanoroughness-on-nanopillar hierarchical surfaces, which possess superhydrophobic slippery characteristics, are obtained by treating PC nanopillar arrays imprinted by PFPE mold with C4F8 plasma. In the second section, we demonstrated the plasmonic metallic nanostructure fabricated by direct nanoimprinting of gold nanoparticles (AuNPs). The localized surface plasmon resonance properties of AuNPs or gold pillar arrays can be controlled and tuned during the annealing process. We apply this gold pillar arrays to refractive index sensing. The corresponding resonance wavelengths can be widely tuned from the visible to infrared region by changing the size of the gold pillars, thus providing a broad range of sensing capability. In the third section, we present a novel process based on nanotransfer printing for fabricating gold nano-pleat arrays. The gold film deposited over nano-ridge arrays on a PFPE mold was transferred directly to an NOA63 film on a glass substrate. The width of the nanocavities on the nano-pleat array can be dramatically reduced compared with the width of the nanoridges on the mold. The mechanisms of remarkable reduction in the nanocavity width during the gold sputtering process were investigated. Plasmonic properties of nano-pleat arrays have been studied numerically and experimentally. A sharp phase dip was used for refractive index sensing, demonstrating an excellent sensitivity with a figure of merit of 40.1. Above proposed fabrication processes are very simple, low-cost and high throughput. Thus, these are promising candidates for flexible device fabrication.
論文目次 口試合格證明 I
摘要 II
誌謝 VI
1.1 Background of the Research 1
1.2 Motivation 1
1.3 Organization of the Thesis 2
2.1 Nanoimprint Lithography (NIL) 5
2.1.1 mold materials 6
2.1.2 resist materials for nanoimprinting 9
2.2 Fabrication of Metal Nanostructure 10
2.2.1 solution-phase syntheses 10
2.2.2 top-down (conventional) approach 11
2.2.3 unconventional approach 12
2.3 Nanostructured Plasmonic Sensors 13
2.3.1 propagating surface plasmon resonance 14
2.3.2 localized surface plasmon resonance 17
2.3.3 Fano resonance 21
3.1 Mold Fabrication 61
3.1.1 silicon mold 61
3.1.2 preparation of polymer molds 61
3.2 Contact Angle Measurement 62
3.3 Simulation Method 63
3.3.1 rigorous coupled-wave analysis (RCWA) [108] 63
3.3.2 Mie analysis [109] 63
3.4 Nanoimprint of Flexible Polycarbonate Sheet with Flexible Polymer Mold and Application to Superhydrophobic Surface (chapter 4) 63
3.4.1 fabrication of superhydrophobic surface 63
3.4.2 material characterization 64
3.5 Plasmonic Metallic Nanostructures by Direct Nanoimprinting of Gold Nanoparticles (chapter 5) 64
3.5.1 synthesis the AuNPs 65
3.5.2 direct nanoimprinting of AuNPs 65
3.5.3 characterization 66
3.6 Nanotransfer Printing of Plasmonic Nano-pleat Arrays with Ultra-Reduced Nanocavity Width Using Perfluoropolyether Molds (chapter 6) 66
3.6.1 fabrication of nano-pleat arrays 66
3.6.2 characterization 67
3.6.3 refractive index sensing 68
4.1 Introduction 73
4.2 Results and Discussion 76
4.2.1 direct nanoimprinting of PC sheet 76
4.2.2 effects of imprinting conditions 77
4.2.3 relaxation modulus of PC 80
4.2.4 air-trapping the mold cavity 82
4.2.5 stretch of PC nanostructures 85
4.2.6 imprinted PC nanopillar array as a superhydrophobic surface 86
4.3 Summary 91
5.1 Introduction 110
5.2 Results and Discussion 112
5.2.1 as-synthesized nanoparticles 112
5.2.2 imprinting temperature 112
5.2.3 imprinting pressure 113
5.2.4 optical response 114
5.2.5 refractive index sensing 115
5.2.6 annealing time effect 117
5.3 Summary 120
6.1 Introduction 129
6.2 Results 132
6.2.1 fabrication of freestanding gold nano-pleat arrays 132
6.2.2 mechanisms of the nanocavity width reduction 134
6.2.3 optical properties of the nano-pleat arrays 139
6.2.4 geometry effects of nano-pleat arrays 144
6.2.5 filled thickness effect 148
6.2.6 refractive index sensing 151
6.3 Summary 153
7.1 Nanoimprint of Flexible Polycarbonate Sheet with Flexible Polymer Mold and Application to Superhydrophobic Surface 178
7.2 Plasmonic Metallic Nanostructures by Direct Nanoimprinting of Gold Nanoparticles 180
7.3 Nanotransfer Printing of Plasmonic Nano-pleat Arrays with Ultra-Reduced Nanocavity Width Using Perfluoropolyether Molds 181
7.4 Summary 182
7.5 Future Work 183
A. Journal Paper 217
B. Conference Paper 218
參考文獻 1. M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectronic Engineering 61, 441-448 (2002).
2. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub‐25 nm vias and trenches in polymers," Applied physics letters 67, 3114-3116 (1995).
3. J. Haisma, M. Verheijen, K. Van Den Heuvel, and J. Van Den Berg, "Mold‐assisted nanolithography: A process for reliable pattern replication," Journal of Vacuum Science & Technology B 14, 4124-4128 (1996).
4. Y. Xia and G. M. Whitesides, "Soft lithography," Annual review of materials science 28, 153-184 (1998).
5. S. H. Ahn and L. J. Guo, "High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates," Advanced Materials 20, 2044-2049 (2008).
6. M. Colburn, S. C. Johnson, M. D. Stewart, S. Damle, T. C. Bailey, B. Choi, M. Wedlake, T. B. Michaelson, S. Sreenivasan, and J. G. Ekerdt, "Step and flash imprint lithography: a new approach to high-resolution patterning," in Microlithography'99, (International Society for Optics and Photonics, 1999), 379-389.
7. Q. Xia and R. F. Pease, "Nanoimprint lithography 20 years on," Nanotechnology 26, 182501 (2015).
8. H. Schift and A. Kristensen, "Nanoimprint Lithography–Patterning of resists using molding," in Springer Handbook of Nanotechnology (Springer, 2010), pp. 271-312.
9. B. Wu and A. Kumar, "Extreme ultraviolet lithography: a review," Journal of Vacuum Science & Technology B 25, 1743-1761 (2007).
10. J. B. K. Law, R. T. T. Khoo, B. S. Tan, and H. Y. Low, "Selective gold nano-patterning on flexible polymer substrate via concurrent nanoimprinting and nanotransfer printing," Applied Surface Science 258, 748-754 (2011).
11. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, "Printing colour at the optical diffraction limit," Nature Nanotechnology 7, 557-561 (2012).
12. C. C. Yu, Y. T. Chen, D. H. Wan, H. L. Chen, S. L. Ku, and Y. F. Chou, "Using One-Step, Dual-Side Nanoimprint Lithography to Fabricate Low-Cost, Highly Flexible Wave Plates Exhibiting Broadband Antireflection," Journal of the Electrochemical Society 158, J195-J199 (2011).
13. X. J. Shen, L. W. Pan, and L. W. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sensors and Actuators a-Physical 97-98, 428-433 (2002).
14. C.-H. Lin, H.-H. Lin, W.-Y. Chen, and T.-C. Cheng, "Direct imprinting on a polycarbonate substrate with a compressed air press for polarizer applications," Microelectronic Engineering 88, 2026-2029 (2011).
15. F. Meng, G. Luo, I. Maximov, L. Montelius, J. Chu, and H. Xu, "Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate," Microelectronic Engineering 88, 3108-3112 (2011).
16. Y.-P. Chen, C.-H. Lee, and L. Awang, "Fabrication and characterization of multi-scale microlens arrays with anti-reflection and diffusion properties," Nanotechnology 22, 215303-215310 (2011).
17. M. W. Zhu, H. W. Li, X. L. Chen, Y. F. Tang, M. H. Lu, and Y. F. Chen, "Silica needle template fabrication of metal hollow microneedle arrays," Journal of Micromechanics and Microengineering 19, 115010-115016 (2009).
18. Y.-H. Ho, C.-C. Liu, S.-W. Liu, H. Liang, C.-W. Chu, and P.-K. Wei, "Efficiency enhancement of flexible organic light-emitting devices by using antireflection nanopillars," Opt. Express 19, A295-A302 (2011).
19. J.-T. Wu, W.-Y. Chang, and S.-Y. Yang, "Fabrication of a nano/micro hybrid lens using gas-assisted hot embossing with an anodic aluminum oxide (AAO) template," Journal of Micromechanics and Microengineering 20, 075023-075028 (2010).
20. J. Lee, S. Park, K. Choi, and G. Kim, "Nano-scale patterning using the roll typed UV-nanoimprint lithography tool," Microelectronic Engineering 85, 861-865 (2008).
21. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," Journal of Vacuum Science & Technology B 15, 2897-2904 (1997).
22. E. Menard, M. A. Meitl, Y. Sun, J.-U. Park, D. J.-L. Shir, Y.-S. Nam, S. Jeon, and J. A. Rogers, "Micro- and Nanopatterning Techniques for Organic Electronic and Optoelectronic Systems," Chemical Reviews 107, 1117-1160 (2007).
23. H. Schmid and B. Michel, "Siloxane polymers for high-resolution, high-accuracy soft lithography," Macromolecules 33, 3042-3049 (2000).
24. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Improved pattern transfer in soft lithography using composite stamps," Langmuir 18, 5314-5320 (2002).
25. D.-Y. Khang, H. Kang, T.-I. Kim, and H. H. Lee, "Low-Pressure Nanoimprint Lithography," Nano Letters 4, 633-637 (2004).
26. C.-C. Liang, M.-Y. Liao, W.-Y. Chen, T.-C. Cheng, W.-H. Chang, and C.-H. Lin, "Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles," Opt. Express 19, 4768-4776 (2011).
27. M. Byun, W. Han, B. Li, S. W. Hong, J. W. Cho, Q. Zou, and Z. Lin, "Guided Organization of λ-DNA into Microring Arrays from Liquid Capillary Bridges," Small 7, 1641-1646 (2011).
28. T. T. Truong, R. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, and J. A. Rogers, "Soft Lithography Using Acryloxy Perfluoropolyether Composite Stamps," Langmuir 23, 2898-2905 (2007).
29. Z. Hu, L. M. Pitet, M. A. Hillmyer, and J. M. DeSimone, "High Modulus, Low Surface Energy, Photochemically Cured Materials from Liquid Precursors," Macromolecules 43, 10397-10405 (2010).
30. G. Sandra, D. Mar, O. Andreas, C. L. Marga, and M. Dirk, "Deformation of nanostructures on polymer molds during soft UV nanoimprint lithography," Nanotechnology 21, 245307 (2010).
31. S. S. Williams, S. Retterer, R. Lopez, R. Ruiz, E. T. Samulski, and J. M. DeSimone, "High-Resolution PFPE-based Molding Techniques for Nanofabrication of High-Pattern Density, Sub-20 nm Features: A Fundamental Materials Approach," Nano Letters 10, 1421-1428 (2010).
32. J. K. Kim, H. S. Cho, H.-S. Jung, K. Lim, K.-B. Kim, D.-G. Choi, J.-H. Jeong, and K.-Y. Suh, "Effect of surface tension and coefficient of thermal expansion in 30 nm scale nanoimprinting with two flexible polymer molds," Nanotechnology 23, 235303 (2012).
33. Z. Hu, J. A. Finlay, L. Chen, D. E. Betts, M. A. Hillmyer, M. E. Callow, J. A. Callow, and J. M. DeSimone, "Photochemically Cross-Linked Perfluoropolyether-Based Elastomers: Synthesis, Physical Characterization, and Biofouling Evaluation," Macromolecules 42, 6999-7007 (2009).
34. A. Vitale, M. Quaglio, M. Cocuzza, C. F. Pirri, and R. Bongiovanni, "Photopolymerization of a perfluoropolyether oligomer and photolithographic processes for the fabrication of microfluidic devices," European Polymer Journal 48, 1118-1126 (2012).
35. R. A. Singh, L. Siyuan, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, "Bio-inspired polymeric patterns with enhanced wear durability for microsystem applications," Materials Science & Engineering C-Materials for Biological Applications 31, 1577-1583 (2011).
36. C. Pina-Hernandez, L. J. Guo, and P.-F. Fu, "High-Resolution Functional Epoxysilsesquioxane-Based Patterning Layers for Large-Area Nanoimprinting," ACS Nano 4, 4776-4784 (2010).
37. A. Schleunitz, C. Spreu, M. Vogler, H. Atasoy, and H. Schift, "Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures," Journal of Vacuum Science & Technology B 29, 06FC01 (2011).
38. L. J. Guo, "Recent progress in nanoimprint technology and its applications," Journal of Physics D: Applied Physics 37, R123 (2004).
39. J. Homola, "Present and future of surface plasmon resonance biosensors," Analytical and bioanalytical chemistry 377, 528-539 (2003).
40. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. Kim, and P. Nealey, "Sub-50 nm period patterns with EUV interference lithography," Microelectronic Engineering 67, 56-62 (2003).
41. G.-Y. Jung, E. Johnston-Halperin, W. Wu, Z. Yu, S.-Y. Wang, W. M. Tong, Z. Li, J. E. Green, B. A. Sheriff, and A. Boukai, "Circuit fabrication at 17 nm half-pitch by nanoimprint lithography," Nano Letters 6, 351-354 (2006).
42. J. Wan, Z. Shu, S.-R. Deng, S.-Q. Xie, B.-R. Lu, R. Liu, Y. Chen, and X.-P. Qu, "Duplication of nanoimprint templates by a novel SU-8/SiO2/PMMA trilayer technique," Journal of Vacuum Science & Technology B 27, 19-22 (2009).
43. S. Ahn, S. Kim, and H. Jeon, "Single-defect photonic crystal cavity laser fabricated by a combination of laser holography and focused ion beam lithography," Applied Physics Letters 96, 131101 (2010).
44. M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, "Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced‐deposition," Advanced Optical Materials 2, 154-161 (2014).
45. C. L. Haynes and R. P. Van Duyne, "Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics," The Journal of Physical Chemistry B 105, 5599-5611 (2001).
46. M. Wood, "Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications," Journal of the Royal Society Interface 4, 1-17 (2007).
47. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, "Hole–mask colloidal lithography," Advanced Materials 19, 4297-4302 (2007).
48. J. Aizpurua, P. Hanarp, D. Sutherland, M. Käll, G. W. Bryant, and F. G. De Abajo, "Optical properties of gold nanorings," Physical Review Letters 90, 057401 (2003).
49. J. S. Shumaker‐Parry, H. Rochholz, and M. Kreiter, "Fabrication of crescent‐shaped optical antennas," Advanced Materials 17, 2131-2134 (2005).
50. K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, "Ultrasensitive Biosensors Using Enhanced Fano Resonances in Capped Gold Nanoslit Arrays," Scientific reports 5, 8547 (2015).
51. K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, "Enhancing Surface Plasmon Detection Using Template-Stripped Gold Nanoslit Arrays on Plastic Films," ACS Nano 6, 2931-2939 (2012).
52. N. C. Lindquist, T. W. Johnson, D. J. Norris, and S.-H. Oh, "Monolithic Integration of Continuously Tunable Plasmonic Nanostructures," Nano Letters 11, 3526-3530 (2011).
53. J. Zaumseil, M. A. Meitl, J. W. Hsu, B. R. Acharya, K. W. Baldwin, Y.-L. Loo, and J. A. Rogers, "Three-dimensional and multilayer nanostructures formed by nanotransfer printing," Nano Letters 3, 1223-1227 (2003).
54. S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).
55. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical 54, 3-15 (1999).
56. E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced Materials 16, 1685-1706 (2004).
57. W.-Y. Chen and C.-H. Lin, "A standing-wave interpretation of plasmon resonance excitation in split-ring resonators," Opt. Express 18, 14280-14292 (2010).
58. S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, "Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications," Chemical Society Reviews 43, 3426-3452 (2014).
59. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik 216, 398-410 (1968).
60. E. Kretschmann, "The determination of the optical constants of metals by excitation of surface plasmons," European Physical Journal A 241, 313-324 (1971).
61. R. Harris and J. S. Wilkinson, "Waveguide surface plasmon resonance sensors," Sensors and Actuators B: Chemical 29, 261-267 (1995).
62. M. Marazuela and M. Moreno-Bondi, "Fiber-optic biosensors–an overview," Analytical and Bioanalytical Chemistry 372, 664-682 (2002).
63. J. Homola, I. Koudela, and S. S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," Sensors and Actuators B: Chemical 54, 16-24 (1999).
64. X. Hoa, A. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosensors and Bioelectronics 23, 151-160 (2007).
65. S. Roh, T. Chung, and B. Lee, "Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors," Sensors 11, 1565-1588 (2011).
66. T. Akimoto, S. Sasaki, K. Ikebukuro, and I. Karube, "Effect of incident angle of light on sensitivity and detection limit for layers of antibody with surface plasmon resonance spectroscopy," Biosensors and Bioelectronics 15, 355-362 (2000).
67. G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Annalen der physik 330, 377-445 (1908).
68. K. M. Mayer and J. H. Hafner, "Localized surface plasmon resonance sensors," Chemical reviews 111, 3828-3857 (2011).
69. N. G. Bastús, J. Comenge, and V. Puntes, "Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening," Langmuir 27, 11098-11105 (2011).
70. X. Ye, C. Zheng, J. Chen, Y. Gao, and C. B. Murray, "Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods," Nano letters 13, 765-771 (2013).
71. J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, "Gold nanorods: synthesis, characterization and applications," Coordination Chemistry Reviews 249, 1870-1901 (2005).
72. Y. Sun and Y. Xia, "Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold," Advanced Materials 15, 695-699 (2003).
73. C.-J. Huang, Y.-H. Wang, P.-H. Chiu, M.-C. Shih, and T.-H. Meen, "Electrochemical synthesis of gold nanocubes," Materials Letters 60, 1896-1900 (2006).
74. C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano letters 6, 683-688 (2006).
75. M. Liu and P. Guyot-Sionnest, "Mechanism of silver (I)-assisted growth of gold nanorods and bipyramids," The Journal of Physical Chemistry B 109, 22192-22200 (2005).
76. X. Xu and M. B. Cortie, "Shape change and color gamut in gold nanorods, dumbbells, and dog bones," Advanced Functional Materials 16, 2170-2176 (2006).
77. J. Gong, G. Li, and Z. Tang, "Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application," Nano Today 7, 564-585 (2012).
78. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, "Shape-and size-dependent refractive index sensitivity of gold nanoparticles," Langmuir 24, 5233-5237 (2008).
79. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced nanoplasmonic optical sensors with reduced substrate effect," Nano letters 8, 3893-3898 (2008).
80. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, and V. V. Moshchalkov, "Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing," Nano letters 11, 391-397 (2011).
81. E. Petryayeva and U. J. Krull, "Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review," Analytica chimica acta 706, 8-24 (2011).
82. R. A. Awang, S. H. El-Gohary, N.-H. Kim, and K. M. Byun, "Enhancement of field–analyte interaction at metallic nanogap arrays for sensitive localized surface plasmon resonance detection," Applied optics 51, 7437-7442 (2012).
83. P. Offermans, M. C. Schaafsma, S. R. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, "Universal scaling of the figure of merit of plasmonic sensors," Acs Nano 5, 5151-5157 (2011).
84. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, "Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit," Nat Commun 4, 2381 (2013).
85. X. Guo, "Surface plasmon resonance based biosensor technique: a review," Journal of biophotonics 5, 483-501 (2012).
86. B. Xue, D. Wang, J. Zuo, X. Kong, Y. Zhang, X. Liu, L. Tu, Y. Chang, C. Li, and F. Wu, "Towards high quality triangular silver nanoprisms: improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity," Nanoscale 7, 8048-8057 (2015).
87. M. Najiminaini, E. Ertorer, B. Kaminska, S. Mittler, and J. J. L. Carson, "Surface plasmon resonance sensing properties of a 3D nanostructure consisting of aligned nanohole and nanocone arrays," Analyst 139, 1876-1882 (2014).
88. A. Shiohara, J. Langer, L. Polavarapu, and L. M. Liz-Marzán, "Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing," Nanoscale 6, 9817-9823 (2014).
89. T. Bai, J. Sun, R. Che, L. Xu, C. Yin, Z. Guo, and N. Gu, "Controllable Preparation of Core–Shell Au–Ag Nanoshuttles with Improved Refractive Index Sensitivity and SERS Activity," ACS applied materials & interfaces 6, 3331-3340 (2014).
90. L. Shao, Q. Ruan, R. Jiang, and J. Wang, "Macroscale Colloidal Noble Metal Nanocrystal Arrays and Their Refractive Index‐Based Sensing Characteristics," Small 10, 802-811 (2014).
91. E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, "Substrate Effect on the Refractive Index Sensitivity of Silver Nanoparticles," The Journal of Physical Chemistry C 118, 24680-24687 (2014).
92. B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, "Narrow Collective Plasmon Resonances in Nanostructure Arrays Observed at Normal Light Incidence for Simplified Sensing in Asymmetric Air and Water Environments," ACS Photonics 1, 1116-1126 (2014).
93. S.-C. Yang, J.-L. Hou, A. Finn, A. Kumar, Y. Ge, and W.-J. Fischer, "Synthesis of multifunctional plasmonic nanopillar array using soft thermal nanoimprint lithography for highly sensitive refractive index sensing," Nanoscale 7, 5760-5766 (2015).
94. T. Maurer, R. Nicolas, G. Lévêque, P. Subramanian, J. Proust, J. Béal, S. Schuermans, J.-P. Vilcot, Z. Herro, and M. Kazan, "Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film," Plasmonics 9, 507-512 (2014).
95. K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, "Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications," Plasmonics 8, 1379-1385 (2013).
96. Y. Shen, T. Liu, Q. Zhu, J. Wang, and C. Jin, "Dislocated Double-Layered Metal Gratings: Refractive Index Sensors with High Figure of Merit," Plasmonics 10, 1489 (2015).
97. M. R. Gartia, A. Hsiao, A. Pokhriyal, S. Seo, G. Kulsharova, B. T. Cunningham, T. C. Bond, and G. L. Liu, "Colorimetric plasmon resonance imaging using nano lycurgus cup arrays," Advanced Optical Materials 1, 68-76 (2013).
98. S. L. Dodson, C. Cao, H. Zaribafzadeh, S. Li, and Q. Xiong, "Engineering plasmonic nanorod arrays for colon cancer marker detection," Biosensors and Bioelectronics 63, 472-477 (2015).
99. B. Zhou, X. Xiao, T. Liu, Y. Gao, Y. Huang, and W. Wen, "Real-time concentration monitoring in microfluidic system via plasmonic nanocrescent arrays," Biosensors and Bioelectronics 77, 385-392 (2016).
100. M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, "Degeneracy breaking of Wood’s anomaly for enhanced refractive index sensing," ACS Photonics 2, 615-621 (2015).
101. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "All-dielectric metasurface analogue of electromagnetically induced transparency," Nature communications 5, 5753 (2014).
102. Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, and Q. Xiong, "Multiple Magnetic Mode-Based Fano Resonance in Split-Ring Resonator/Disk Nanocavities," ACS Nano 7, 11071-11078 (2013).
103. Y.-L. Ho, A. Portela, Y. Lee, E. Maeda, H. Tabata, and J.-J. Delaunay, "Hollow Plasmonic U-Cavities with High-Aspect-Ratio Nanofins Sustaining Strong Optical Vortices for Light Trapping and Sensing," Advanced Optical Materials 2, 522-528 (2014).
104. S. Ye, X. Zhang, L. Chang, T. Wang, Z. Li, J. Zhang, and B. Yang, "High-Performance Plasmonic Sensors Based on Two-Dimensional Ag Nanowell Crystals," Advanced Optical Materials 2, 779-787 (2014).
105. A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, "Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing," ACS Photonics 2, 1167-1174 (2015).
106. F. Wu, L. Liu, L. Feng, D. Xu, and N. Lu, "Improving the sensing performance of double gold gratings by oblique incident light," Nanoscale 7, 13026-13032 (2015).
107. M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, "Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit," ACS Nano 9, 7621-7633 (2015).
108. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic Engineering 83, 1798-1804 (2006).
109. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
110. M. J. Hostetler, J. E. Wingate, C.-J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, and G. D. Wignall, "Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size," Langmuir 14, 17-30 (1998).
111. J. N. Lee, C. Park, and G. M. Whitesides, "Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices," Analytical chemistry 75, 6544-6554 (2003).
112. C.-C. Liang, C.-H. Lin, T.-C. Cheng, J. Shieh, and H.-H. Lin, "Nanoimprinting of Flexible Polycarbonate Sheets with a Flexible Polymer Mold and Application to Superhydrophobic Surfaces," Advanced Materials Interfaces 2, 1500030 (2015).
113. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature 432, 488-492 (2004).
114. T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, "Direct fabrication of metavanadate phosphor films on organic substrates for white-light-emitting devices," Nature Materials 7, 735-740 (2008).
115. J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, "High Efficiency Thin Upgraded Metallurgical-Grade Silicon Solar Cells on Flexible Substrates," Nano Letters 12, 5143-5147 (2012).
116. J. Han, Y. Dou, J. Zhao, M. Wei, D. G. Evans, and X. Duan, "Flexible CoAl LDH@PEDOT Core/Shell Nanoplatelet Array for High-Performance Energy Storage," Small 9, 98-106 (2013).
117. H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, P. T. Herwig, A. J. J. M. van Breemen, and D. M. de Leeuw, "Plastic transistors in active-matrix displays," Nature 414, 599-599 (2001).
118. J.-H. Ahn and B. H. Hong, "Graphene for displays that bend," Nature Nanotechnology 9, 737-738 (2014).
119. J.-H. Na, S. C. Park, Y. Sohn, and S.-D. Lee, "Realizing the concept of a scalable artificial iris with self-regulating capability by reversible photoreaction of spiropyran dyes," Biomaterials 34, 3159-3164 (2013).
120. H.-Y. Wu, C. J. Choi, and B. T. Cunningham, "Plasmonic Nanogap-Enhanced Raman Scattering Using a Resonant Nanodome Array," Small 8, 2878-2885 (2012).
121. J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, and L. Hu, "Highly Transparent and Flexible Nanopaper Transistors," ACS Nano 7, 2106-2113 (2013).
122. A. Menaker, V. Syritski, J. Reut, A. Öpik, V. Horváth, and R. E. Gyurcsányi, "Electrosynthesized Surface-Imprinted Conducting Polymer Microrods for Selective Protein Recognition," Advanced Materials 21, 2271-2275 (2009).
123. L. F. Boesel, C. Greiner, E. Arzt, and A. del Campo, "Gecko-Inspired Surfaces: A Path to Strong and Reversible Dry Adhesives," Advanced Materials 22, 2125-2137 (2010).
124. D. Wan, H.-L. Chen, Y.-T. Lai, C.-C. Yu, and K.-F. Lin, "Use of Reversal Nanoimprinting of Nanoparticles to Prepare Flexible Waveguide Sensors Exhibiting Enhanced Scattering of the Surface Plasmon Resonance," Advanced Functional Materials 20, 1742-1749 (2010).
125. H. L. Chen, S. Y. Chuang, W. H. Lee, S. S. Kuo, W. F. Su, S. L. Ku, and Y. F. Chou, "Extraordinary transmittance in three dimensionalcrater, pyramid, and hole-arraystructures prepared through reversal imprintingof metal films," Opt. Express 17, 1636-1645 (2009).
126. F. Meng, G. Luo, I. Maximov, L. Montelius, Y. Zhou, L. Nilsson, P. Carlberg, B. Heidari, J. Chu, and H. Q. Xu, "Efficient methods of nanoimprint stamp cleaning based on imprint self-cleaning effect," Nanotechnology 22, 185301 (2011).
127. V. A. Soloukhin, W. Posthumus, J. C. M. Brokken-Zijp, J. Loos, and G. de With, "Mechanical properties of silica–(meth)acrylate hybrid coatings on polycarbonate substrate," Polymer 43, 6169-6181 (2002).
128. J. Tallal, K. Berton, M. Gordon, and D. Peyrade, "4 inch lift-off process by trilayer nanoimprint lithography," Journal of Vacuum Science & Technology B 23, 2914-2919 (2005).
129. F. Q. Yang, "Viscosity measurement of polycarbonate by using a penetration viscometer," Polymer Engineering and Science 37, 101-104 (1997).
130. H. D. Rowland and W. P. King, "Polymer deformation and filling modes during microembossing," Journal of Micromechanics and Microengineering 14, 1625-1632 (2004).
131. S. Landis, N. Chaix, C. Gourgon, and T. Leveder, "Quantitative characterizations of a nanopatterned bonded wafer: force determination for nanoimprint lithography stamp removal," Nanotechnology 19, 125305 (2008).
132. S. Park, Z. Song, L. Brumfield, A. Amirsadeghi, and J. Lee, "Demolding temperature in thermal nanoimprint lithography," Appl. Phys. A 97, 395-402 (2009).
133. Y. Hirai, S. Yoshida, and N. Takagi, "Defect analysis in thermal nanoimprint lithography," Journal of Vacuum Science & Technology B 21, 2765-2770 (2003).
134. S. Lan, H.-J. Lee, S.-H. Lee, J. Ni, X. Lai, H.-W. Lee, J.-H. Song, and M. G. Lee, "Experimental and numerical study on the viscoelastic property of polycarbonate near glass transition temperature for micro thermal imprint process," Materials & Design 30, 3879-3884 (2009).
135. M. L. Williams, R. F. Landel, and J. D. Ferry, "The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids," Journal of the American Chemical Society 77, 3701-3707 (1955).
136. M. J. Lee, N. Y. Lee, J. R. Lim, J. B. Kim, M. Kim, H. K. Baik, and Y. S. Kim, "Antiadhesion Surface Treatments of Molds for High-Resolution Unconventional Lithography," Advanced Materials 18, 3115-3119 (2006).
137. H. Schift, "Nanoimprint lithography: An old story in modern times? A review," Journal of Vacuum Science & Technology B 26, 458-480 (2008).
138. X. Li, H. Tian, J. Shao, Y. Ding, and H. Liu, "Electrically Modulated Microtransfer Molding for Fabrication of Micropillar Arrays with Spatially Varying Heights," Langmuir 29, 1351-1355 (2013).
139. T. Hayden, L. Yee Cheong, and B. Duane, "An investigation of the detrimental impact of trapped air in thermoplastic micro-embossing," Journal of Micromechanics and Microengineering 20, 065014 (2010).
140. L. A. Utracki and R. Simha, "Free volume and viscosity of polymer-compressed gas mixtures during extrusion foaming," Journal of Polymer Science Part B-Polymer Physics 39, 342-362 (2001).
141. J. E. Kluin, Z. Yu, S. Vleeshouwers, J. D. McGervey, A. M. Jamieson, and R. Simha, "TEMPERATURE AND TIME-DEPENDENCE OF FREE-VOLUME IN BISPHENOL-A POLYCARBONATE STUDIED BY POSITRON LIFETIME SPECTROSCOPY," Macromolecules 25, 5089-5093 (1992).
142. Y. Okada and Y. Tokumaru, "Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K," Journal of Applied Physics 56, 314-320 (1984).
143. R. Greiner and F. R. Schwarzl, "Thermal contraction and volume relaxation of amorphous polymers," Rheol Acta 23, 378-395 (1984).
144. S. Wang and L. Jiang, "Definition of Superhydrophobic States," Advanced Materials 19, 3423-3424 (2007).
145. Y. Y. Yan, N. Gao, and W. Barthlott, "Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces," Advances in Colloid and Interface Science 169, 80-105 (2011).
146. Z. Guo and W. Liu, "Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure," Plant Science 172, 1103-1112 (2007).
147. X. F. Gao and L. Jiang, "Water-repellent legs of water striders," Nature 432, 36-36 (2004).
148. X.-S. Zhang, F.-Y. Zhu, M.-D. Han, X.-M. Sun, X.-H. Peng, and H.-X. Zhang, "Self-Cleaning Poly(dimethylsiloxane) Film with Functional Micro/Nano Hierarchical Structures," Langmuir 29, 10769-10775 (2013).
149. Q.-X. Zhang, Y.-X. Chen, Z. Guo, H.-L. Liu, D.-P. Wang, and X.-J. Huang, "Bioinspired Multifunctional Hetero-Hierarchical Micro/Nanostructure Tetragonal Array with Self-Cleaning, Anticorrosion, and Concentrators for the SERS Detection," ACS Applied Materials & Interfaces 5, 10633-10642 (2013).
150. C.-H. Chen, Q. Cai, C. Tsai, C.-L. Chen, G. Xiong, Y. Yu, and Z. Ren, "Dropwise condensation on superhydrophobic surfaces with two-tier roughness," Applied Physics Letters 90, 173108 (2007).
151. Y. Lai, F. Pan, C. Xu, H. Fuchs, and L. Chi, "In Situ Surface-Modification-Induced Superhydrophobic Patterns with Reversible Wettability and Adhesion," Advanced Materials 25, 1682-1686 (2013).
152. J. Shieh, F. J. Hou, Y. C. Chen, H. M. Chen, S. P. Yang, C. C. Cheng, and H. L. Chen, "Robust Airlike Superhydrophobic Surfaces," Advanced Materials 22, 597-601 (2010).
153. S. Barthwal, Y. S. Kim, and S.-H. Lim, "Mechanically Robust Superamphiphobic Aluminum Surface with Nanopore-Embedded Microtexture," Langmuir 29, 11966-11974 (2013).
154. Y. Liu, X. Yin, J. Zhang, Y. Wang, Z. Han, and L. Ren, "Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate," Applied Surface Science 280, 845-849 (2013).
155. U. Manna and D. M. Lynn, "Restoration of Superhydrophobicity in Crushed Polymer Films by Treatment with Water: Self-Healing and Recovery of Damaged Topographic Features Aided by an Unlikely Source," Advanced Materials 25, 5104-5108 (2013).
156. T. Darmanin, E. T. de Givenchy, S. Amigoni, and F. Guittard, "Superhydrophobic Surfaces by Electrochemical Processes," Advanced Materials 25, 1378-1394 (2013).
157. H. Zhou, H. Wang, H. Niu, A. Gestos, X. Wang, and T. Lin, "Fluoroalkyl Silane Modified Silicone Rubber/Nanoparticle Composite: A Super Durable, Robust Superhydrophobic Fabric Coating," Advanced Materials 24, 2409-2412 (2012).
158. L. Shen, B. Wang, J. Wang, J. Fu, C. Picart, and J. Ji, "Asymmetric Free-Standing Film with Multifunctional Anti-Bacterial and Self-Cleaning Properties," ACS Applied Materials & Interfaces 4, 4476-4483 (2012).
159. E. Singh, Z. Chen, F. Houshmand, W. Ren, Y. Peles, H.-M. Cheng, and N. Koratkar, "Superhydrophobic Graphene Foams," Small 9, 75-80 (2013).
160. M. Naddaf, S. Saloum, and B. Alkhaled, "Atomic oxygen in remote plasma of radio-frequency hollow cathode discharge source: Characterization and efficiency," Vacuum 85, 421-428 (2010).
161. R. Di Mundo, F. Palumbo, and R. d'Agostino, "Nanotexturing of Polystyrene Surface in Fluorocarbon Plasmas:  From Sticky to Slippery Superhydrophobicity," Langmuir 24, 5044-5051 (2008).
162. R. Di Mundo, V. De Benedictis, F. Palumbo, and R. d’Agostino, "Fluorocarbon plasmas for nanotexturing of polymers: A route to water-repellent antireflective surfaces," Applied Surface Science 255, 5461-5465 (2009).
163. R. N. Wenzel, "Surface Roughness and Contact Angle," The Journal of Physical and Colloid Chemistry 53, 1466-1467 (1949).
164. J.-H. Kim, H.-S. Hwang, S.-W. Hahm, and D.-Y. Khang, "Hydrophobically Recovered and Contact Printed Siloxane Oligomers for General-Purpose Surface Patterning," Langmuir 26, 13015-13019 (2010).
165. Z. Ma, C. Jiang, X. Li, F. Ye, and W. Yuan, "Controllable fabrication of periodic arrays of high-aspect-ratio micro-nano hierarchical structures and their superhydrophobicity," Journal of Micromechanics and Microengineering 23, 095027 (2013).
166. A. B. D. Cassie, "Contact angles," Discussions of the Faraday Society 3, 11-16 (1948).
167. X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, "Metallic photonic crystals based on solution-processible gold nanoparticles," Nano letters 6, 651-655 (2006).
168. X. Zhang, H. Liu, and S. Feng, "Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures," Nanotechnology 20, 425303 (2009).
169. S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. Fréchet, "Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication," Nano letters 7, 1869-1877 (2007).
170. I. Park, S. H. Ko, H. Pan, C. P. Grigoropoulos, A. P. Pisano, J. M. Fréchet, E. S. Lee, and J. H. Jeong, "Nanoscale patterning and electronics on flexible substrate by direct nanoimprinting of metallic nanoparticles," Advanced Materials 20, 489-496 (2008).
171. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint Lithography with 25-Nanometer Resolution," Science 272, 85-87 (1996).
172. L. J. Guo, "Nanoimprint lithography: Methods and material requirements," Advanced Materials 19, 495-513 (2007).
173. C. M. S. Torres, Alternative lithography: unleashing the potentials of nanotechnology (Springer Science & Business Media, 2012).
174. Y.-T. Chang, Y.-C. Lai, C.-T. Li, C.-K. Chen, and T.-J. Yen, "A multi-functional plasmonic biosensor," Opt. Express 18, 9561-9569 (2010).
175. S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, "Patterned arrays of Au rings for localized surface plasmon resonance," Langmuir 22, 7109-7112 (2006).
176. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, "Analysis of the dispersion of optical plastic materials," Optical Materials 29, 1481-1490 (2007).
177. K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, "A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods," Acs Nano 2, 687-692 (2008).
178. S. Lee, K. M. Mayer, and J. H. Hafner, "Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates," Analytical chemistry 81, 4450-4455 (2009).
179. J. Henzie, M. H. Lee, and T. W. Odom, "Multiscale patterning of plasmonic metamaterials," Nature nanotechnology 2, 549-554 (2007).
180. C. Langhammer, B. Kasemo, and I. Zorić, "Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios," The Journal of chemical physics 126, 194702 (2007).
181. T. Karakouz, D. Holder, M. Goomanovsky, A. Vaskevich, and I. Rubinstein, "Morphology and refractive index sensitivity of gold island films," Chemistry of Materials 21, 5875-5885 (2009).
182. Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, "Blue-shift of surface plasmon resonance in a metal nanoslit array structure," Opt. Express 17, 16081-16091 (2009).
183. H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Applied Physics Letters 89, 211126 (2006).
184. Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, "Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit," Scientific reports 3, 1194 (2013).
185. S.-H. Chang and Y.-L. Su, "Mapping of transmission spectrum between plasmonic and nonplasmonic single slit. I: resonant transmission," JOSA B 32, 38-44 (2015).
186. S.-H. Chang and Y.-L. Su, "Mapping of transmission spectrum between plasmonic and nonplasmonic single slits. II: nonresonant transmission," JOSA B 32, 45-51 (2015).
187. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, "Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light," Physical Review Letters 100, 066408 (2008).
188. H.-N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, "Molecular sentinel-on-chip for SERS-based biosensing," Physical Chemistry Chemical Physics 15, 6008-6015 (2013).
189. Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, "M-shaped Grating by Nanoimprinting: A Replicable, Large-Area, Highly Active Plasmonic Surface-Enhanced Raman Scattering Substrate with Nanogaps," Small 10, 1603-1611 (2014).
190. T. Ding, L. O. Herrmann, B. de Nijs, F. Benz, and J. J. Baumberg, "Self-Aligned Colloidal Lithography for Controllable and Tuneable Plasmonic Nanogaps," Small 11, 2139-2143 (2015).
191. C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, "Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods," ACS Photonics 2, 1489 (2015).
192. X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, "Nanogap-Enhanced Infrared Spectroscopy with Template-Stripped Wafer-Scale Arrays of Buried Plasmonic Cavities," Nano Letters 15, 107-113 (2015).
193. V. Flauraud, T. S. van Zanten, M. Mivelle, C. Manzo, M. F. Garcia Parajo, and J. Brugger, "Large-Scale Arrays of Bowtie Nanoaperture Antennas for Nanoscale Dynamics in Living Cell Membranes," Nano Letters 15, 4176-4182 (2015).
194. J. Zhou and L. J. Guo, "Transition from a spectrum filter to a polarizer in a metallic nano-slit array," Scientific reports 4, 3614 (2014).
195. S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, "Giant birefringence induced by plasmonic nanoslit arrays," Applied Physics Letters 95, 013105 (2009).
196. P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, "Large Enhancement of Nonlinear Optical Phenomena by Plasmonic Nanocavity Gratings," Nano Letters 10, 4880-4883 (2010).
197. X. Zhou, C. Deeb, S. Kostcheev, G. P. Wiederrecht, P.-M. Adam, J. Béal, J. Plain, D. J. Gosztola, J. Grand, N. Félidj, H. Wang, A. Vial, and R. Bachelot, "Selective Functionalization of the Nanogap of a Plasmonic Dimer," ACS Photonics 2, 121-129 (2015).
198. G. Kang, A. Matikainen, P. Stenberg, E. Färm, P. Li, M. Ritala, P. Vahimaa, S. Honkanen, and X. Tan, "High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS)," ACS Applied Materials & Interfaces 7, 11452-11459 (2015).
199. H. Ni, M. Wang, T. Shen, and J. Zhou, "Self-Assembled Large-Area Annular Cavity Arrays with Tunable Cylindrical Surface Plasmons for Sensing," ACS Nano 9, 1913-1925 (2015).
200. Z. Yi, X. Li, J. Luo, Y. Yi, X. Xu, P. Wu, X. Jiang, W. Wu, Y. Yi, and Y. Tang, "Self-Organized Ag Nanorings Antenna Substrates for Surface-Enhanced Raman Spectroscopy," Plasmonics 9, 375-379 (2014).
201. C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, "Gap and channeled plasmons in tapered grooves: a review," Nanoscale 7, 9355-9386 (2015).
202. M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, "Efficient optical coupling into metal-insulator-metal plasmon modes with subwavelength diffraction gratings," Applied Physics Letters 92, 113109 (2008).
203. K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, "Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves," Opt. Express 19, 24530-24539 (2011).
204. Y. Pang, C. Genet, and T. W. Ebbesen, "Optical transmission through subwavelength slit apertures in metallic films," Optics Communications 280, 10-15 (2007).
205. M. Bora, B. J. Fasenfest, E. M. Behymer, A. S. P. Chang, H. T. Nguyen, J. A. Britten, C. C. Larson, J. W. Chan, R. R. Miles, and T. C. Bond, "Plasmon Resonant Cavities in Vertical Nanowire Arrays," Nano Letters 10, 2832-2837 (2010).
206. Y. Kim, K. S. Kim, K. L. Kounovsky, R. Chang, G. Y. Jung, J. J. dePablo, K. Jo, and D. C. Schwartz, "Nanochannel confinement: DNA stretch approaching full contour length," Lab on a Chip 11, 1721-1729 (2011).
207. Y. C. Jun, R. Pala, and M. L. Brongersma, "Strong Modification of Quantum Dot Spontaneous Emission via Gap Plasmon Coupling in Metal Nanoslits," The Journal of Physical Chemistry C 114, 7269-7273 (2010).
208. S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, "Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode," Scientific Reports 4, 4788 (2014).
209. R. L. Mays, P. Pourhossein, D. Savithri, J. Genzer, R. C. Chiechi, and M. D. Dickey, "Thiol-containing polymeric embedding materials for nanoskiving," Journal of Materials Chemistry C 1, 121-130 (2013).
210. E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, "Self-limited plasmonic welding of silver nanowire junctions," Nature materials 11, 241-249 (2012).
211. W. Kern, Thin film processes II (Academic press, 2012), Vol. 2.
212. J. Grant, D. Dunn, and D. McClure, "Argon and oxygen sputter etching of polystyrene, polypropylene, and poly (ethylene terephthalate) thin films," Journal of Vacuum Science & Technology A 6, 2213-2220 (1988).
213. H.-K. Kim, D.-G. Kim, K.-S. Lee, M.-S. Huh, S. H. Jeong, K. I. Kim, and T.-Y. Seong, "Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes," Applied Physics Letters 86, 183503 (2005).
214. F. Bottino, G. Di Pasquale, A. Pollicino, F. Pilati, M. Toselli, and C. Tonelli, "XPS study on surface segregation in poly (ethylene-iso/terephthalate)-perfluoropolyether block copolymers," Macromolecules 31, 7814-7819 (1998).
215. P. Herrera‐Fierro, W. R. Jones Jr, and S. V. Pepper, "Interfacial chemistry of a perfluoropolyether lubricant studied by x‐ray photoelectron spectroscopy and temperature desorption spectroscopy," Journal of Vacuum Science & Technology A 11, 354-367 (1993).
216. E. McCafferty and J. P. Wightman, "Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method," Surface and Interface Analysis 26, 549-564 (1998).
217. R. Koch, "The intrinsic stress of polycrystalline and epitaxial thin metal films," Journal of Physics: Condensed Matter 6, 9519 (1994).
218. T. R. Hendricks, W. Wang, and I. Lee, "Buckling in nanomechanical films," Soft Matter 6, 3701-3706 (2010).
219. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer," Nature 393, 146-149 (1998).
220. A. Moreau, C. Lafarge, N. Laurent, K. Edee, and G. Granet, "Enhanced transmission of slit arrays in an extremely thin metallic film," Journal of Optics A: Pure and Applied Optics 9, 165 (2007).
221. S. Kim, Y. Xuan, V. P. Drachev, L. T. Varghese, L. Fan, M. Qi, and K. J. Webb, "Nanoimprinted plasmonic nanocavity arrays," Opt. Express 21, 15081-15089 (2013).
222. T. Ongarello, F. Romanato, P. Zilio, and M. Massari, "Polarization independence of extraordinary transmission trough 1D metallic gratings," Opt. Express 19, 9426-9433 (2011).
223. L. Rayleigh, "On the Dynamical Theory of Gratings," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 79, 399-416 (1907).
224. H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, "Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays," Opt. Express 17, 2334-2340 (2009).
225. C. Genet, M. P. van Exter, and J. P. Woerdman, "Fano-type interpretation of red shifts and red tails in hole array transmission spectra," Optics Communications 225, 331-336 (2003).
226. S.-H. Chang, S. Gray, and G. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).
227. B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat Mater 9, 707-715 (2010).
228. K.-L. Lee, W.-S. Wang, and P.-K. Wei, "Comparisons of Surface Plasmon Sensitivities in Periodic Gold Nanostructures," Plasmonics 3, 119-125 (2008).
229. M. H. Lee, H. Gao, and T. W. Odom, "Refractive Index Sensing Using Quasi One-Dimensional Nanoslit Arrays," Nano Letters 9, 2584-2588 (2009).
230. W.-Y. Chen, C.-H. Lin, and W.-T. Chen, "Plasmonic phase transition and phase retardation: essential optical characteristics of localized surface plasmon resonance," Nanoscale 5, 9950-9956 (2013).
231. V. Kravets, F. Schedin, and A. Grigorenko, "Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles," Physical review letters 101, 087403 (2008).
232. A. I. Aristov, U. Zywietz, A. B. Evlyukhin, C. Reinhardt, B. N. Chichkov, and A. V. Kabashin, "Laser-ablative engineering of phase singularities in plasmonic metamaterial arrays for biosensing applications," Applied Physics Letters 104, 071101 (2014).
233. M. Kanso, S. Cuenot, and G. Louarn, "Roughness effect on the SPR measurements for an optical fibre configuration: experimental and numerical approaches," Journal of Optics A: Pure and Applied Optics 9, 586 (2007).
234. J. Herráez and R. Belda, "Refractive Indices, Densities and Excess Molar Volumes of Monoalcohols + Water," J Solution Chem 35, 1315-1328 (2006).
235. Y.-L. Ho, L.-C. Huang, E. Lebrasseur, Y. Mita, and J.-J. Delaunay, "Independent light-trapping cavity for ultra-sensitive plasmonic sensing," Applied Physics Letters 105, 061112 (2014).
236. T. Siegfried, Y. Ekinci, H. Solak, O. J. Martin, and H. Sigg, "Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors," Applied Physics Letters 99, 263302 (2011).
237. S.-H. Wu, K.-L. Lee, R.-H. Weng, Z.-X. Zheng, A. Chiou, and P.-K. Wei, "Dynamic monitoring of mechano-sensing of cells by gold nanoslit surface plasmon resonance sensor," PloS one 9, e89522 (2014).
238. S.-H. Wu, S.-Y. Hsieh, K.-L. Lee, R.-H. Weng, A. Chiou, and P.-K. Wei, "Cell viability monitoring using Fano resonance in gold nanoslit array," Applied Physics Letters 103, 133702 (2013).
239. D. B. Mazulquim, K. J. Lee, J. W. Yoon, L. V. Muniz, B.-H. V. Borges, L. G. Neto, and R. Magnusson, "Efficient band-pass color filters enabled by resonant modes and plasmons near the Rayleigh anomaly," Opt. Express 22, 30843-30851 (2014).
240. F. Avilés, L. Llanes, and A. Oliva, "Elasto-plastic properties of gold thin films deposited onto polymeric substrates," Journal of materials science 44, 2590-2598 (2009).
241. H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, "Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity," ACS applied materials & interfaces 7, 18038-18045 (2015).
242. H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, "A Novel Graphene Oxide‐Based Surface Plasmon Resonance Biosensor for Immunoassay," Small 9, 2537-2540 (2013).
243. X. Liu, L. Cao, W. Song, K. Ai, and L. Lu, "Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy," ACS applied materials & interfaces 3, 2944-2952 (2011).
  • 同意授權校內瀏覽/列印電子全文服務,於2016-05-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-05-30起公開。

  • 如您有疑問,請聯絡圖書館